DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#define FILTER_PROCESSING_SCALAR

#include "FilterProcessingSIMD-inl.h"

namespace mozilla {
namespace gfx {

void
FilterProcessing::ExtractAlpha_Scalar(const IntSize& size, uint8_t* sourceData, int32_t sourceStride, uint8_t* alphaData, int32_t alphaStride)
{
  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x++) {
      int32_t sourceIndex = y * sourceStride + 4 * x;
      int32_t targetIndex = y * alphaStride + x;
      alphaData[targetIndex] = sourceData[sourceIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
    }
  }
}

TemporaryRef<DataSourceSurface>
FilterProcessing::ConvertToB8G8R8A8_Scalar(SourceSurface* aSurface)
{
  return ConvertToB8G8R8A8_SIMD<simd::Scalaru8x16_t>(aSurface);
}

template<BlendMode aBlendMode>
static TemporaryRef<DataSourceSurface>
ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2)
{
  IntSize size = aInput1->GetSize();
  RefPtr<DataSourceSurface> target =
    Factory::CreateDataSourceSurface(size, FORMAT_B8G8R8A8);
  if (!target) {
    return nullptr;
  }

  uint8_t* source1Data = aInput1->GetData();
  uint8_t* source2Data = aInput2->GetData();
  uint8_t* targetData = target->GetData();
  uint32_t targetStride = target->Stride();
  uint32_t source1Stride = aInput1->Stride();
  uint32_t source2Stride = aInput2->Stride();

  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x++) {
      uint32_t targetIndex = y * targetStride + 4 * x;
      uint32_t source1Index = y * source1Stride + 4 * x;
      uint32_t source2Index = y * source2Stride + 4 * x;
      uint32_t qa = source1Data[source1Index + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
      uint32_t qb = source2Data[source2Index + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
      for (int32_t i = std::min(B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_R);
           i <= std::max(B8G8R8A8_COMPONENT_BYTEOFFSET_B, B8G8R8A8_COMPONENT_BYTEOFFSET_R); i++) {
        uint32_t ca = source1Data[source1Index + i];
        uint32_t cb = source2Data[source2Index + i];
        uint32_t val;
        switch (aBlendMode) {
          case BLEND_MODE_MULTIPLY:
            val = ((255 - qa) * cb + (255 - qb + cb) * ca);
            break;
          case BLEND_MODE_SCREEN:
            val = 255 * (cb + ca) - ca * cb;
            break;
          case BLEND_MODE_DARKEN:
            val = umin((255 - qa) * cb + 255 * ca,
                       (255 - qb) * ca + 255 * cb);
            break;
          case BLEND_MODE_LIGHTEN:
            val = umax((255 - qa) * cb + 255 * ca,
                       (255 - qb) * ca + 255 * cb);
            break;
          default:
            MOZ_CRASH();
        }
        val = umin(FilterProcessing::FastDivideBy255<unsigned>(val), 255U);
        targetData[targetIndex + i] = static_cast<uint8_t>(val);
      }
      uint32_t alpha = 255 * 255 - (255 - qa) * (255 - qb);
      targetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] =
        FilterProcessing::FastDivideBy255<uint8_t>(alpha);
    }
  }

  return target;
}

TemporaryRef<DataSourceSurface>
FilterProcessing::ApplyBlending_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2,
                                       BlendMode aBlendMode)
{
  switch (aBlendMode) {
    case BLEND_MODE_MULTIPLY:
      return gfx::ApplyBlending_Scalar<BLEND_MODE_MULTIPLY>(aInput1, aInput2);
    case BLEND_MODE_SCREEN:
      return gfx::ApplyBlending_Scalar<BLEND_MODE_SCREEN>(aInput1, aInput2);
    case BLEND_MODE_DARKEN:
      return gfx::ApplyBlending_Scalar<BLEND_MODE_DARKEN>(aInput1, aInput2);
    case BLEND_MODE_LIGHTEN:
      return gfx::ApplyBlending_Scalar<BLEND_MODE_LIGHTEN>(aInput1, aInput2);
    default:
      return nullptr;
  }
}

template<MorphologyOperator Operator>
static void
ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
                                 uint8_t* aDestData, int32_t aDestStride,
                                 const IntRect& aDestRect, int32_t aRadius)
{
  static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
                Operator == MORPHOLOGY_OPERATOR_DILATE,
                "unexpected morphology operator");

  for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++) {
    int32_t startX = aDestRect.x - aRadius;
    int32_t endX = aDestRect.x + aRadius;
    for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x++, startX++, endX++) {
      int32_t sourceIndex = y * aSourceStride + 4 * startX;
      uint8_t u[4];
      for (size_t i = 0; i < 4; i++) {
        u[i] = aSourceData[sourceIndex + i];
      }
      sourceIndex += 4;
      for (int32_t ix = startX + 1; ix <= endX; ix++, sourceIndex += 4) {
        for (size_t i = 0; i < 4; i++) {
          if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
            u[i] = umin(u[i], aSourceData[sourceIndex + i]);
          } else {
            u[i] = umax(u[i], aSourceData[sourceIndex + i]);
          }
        }
      }

      int32_t destIndex = y * aDestStride + 4 * x;
      for (size_t i = 0; i < 4; i++) {
        aDestData[destIndex+i] = u[i];
      }
    }
  }
}

void
FilterProcessing::ApplyMorphologyHorizontal_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
                                                   uint8_t* aDestData, int32_t aDestStride,
                                                   const IntRect& aDestRect, int32_t aRadius,
                                                   MorphologyOperator aOp)
{
  if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
    gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
  } else {
    gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
  }
}

template<MorphologyOperator Operator>
static void ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
                                           uint8_t* aDestData, int32_t aDestStride,
                                           const IntRect& aDestRect, int32_t aRadius)
{
  static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
                Operator == MORPHOLOGY_OPERATOR_DILATE,
                "unexpected morphology operator");

  int32_t startY = aDestRect.y - aRadius;
  int32_t endY = aDestRect.y + aRadius;
  for (int32_t y = aDestRect.y; y < aDestRect.YMost(); y++, startY++, endY++) {
    for (int32_t x = aDestRect.x; x < aDestRect.XMost(); x++) {
      int32_t sourceIndex = startY * aSourceStride + 4 * x;
      uint8_t u[4];
      for (size_t i = 0; i < 4; i++) {
        u[i] = aSourceData[sourceIndex + i];
      }
      sourceIndex += aSourceStride;
      for (int32_t iy = startY + 1; iy <= endY; iy++, sourceIndex += aSourceStride) {
        for (size_t i = 0; i < 4; i++) {
          if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
            u[i] = umin(u[i], aSourceData[sourceIndex + i]);
          } else {
            u[i] = umax(u[i], aSourceData[sourceIndex + i]);
          }
        }
      }

      int32_t destIndex = y * aDestStride + 4 * x;
      for (size_t i = 0; i < 4; i++) {
        aDestData[destIndex+i] = u[i];
      }
    }
  }
}

void
FilterProcessing::ApplyMorphologyVertical_Scalar(uint8_t* aSourceData, int32_t aSourceStride,
                                                   uint8_t* aDestData, int32_t aDestStride,
                                                   const IntRect& aDestRect, int32_t aRadius,
                                                   MorphologyOperator aOp)
{
  if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
    gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
  } else {
    gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
      aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
  }
}

TemporaryRef<DataSourceSurface>
FilterProcessing::ApplyColorMatrix_Scalar(DataSourceSurface* aInput, const Matrix5x4 &aMatrix)
{
  return ApplyColorMatrix_SIMD<simd::Scalari32x4_t,simd::Scalari16x8_t,simd::Scalaru8x16_t>(aInput, aMatrix);
}

void
FilterProcessing::ApplyComposition_Scalar(DataSourceSurface* aSource, DataSourceSurface* aDest,
                                          CompositeOperator aOperator)
{
  return ApplyComposition_SIMD<simd::Scalari32x4_t,simd::Scalaru16x8_t,simd::Scalaru8x16_t>(aSource, aDest, aOperator);
}

void
FilterProcessing::SeparateColorChannels_Scalar(const IntSize &size, uint8_t* sourceData, int32_t sourceStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data, int32_t channelStride)
{
  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x++) {
      int32_t sourceIndex = y * sourceStride + 4 * x;
      int32_t targetIndex = y * channelStride + x;
      channel0Data[targetIndex] = sourceData[sourceIndex];
      channel1Data[targetIndex] = sourceData[sourceIndex+1];
      channel2Data[targetIndex] = sourceData[sourceIndex+2];
      channel3Data[targetIndex] = sourceData[sourceIndex+3];
    }
  }
}

void
FilterProcessing::CombineColorChannels_Scalar(const IntSize &size, int32_t resultStride, uint8_t* resultData, int32_t channelStride, uint8_t* channel0Data, uint8_t* channel1Data, uint8_t* channel2Data, uint8_t* channel3Data)
{
  for (int32_t y = 0; y < size.height; y++) {
    for (int32_t x = 0; x < size.width; x++) {
      int32_t resultIndex = y * resultStride + 4 * x;
      int32_t channelIndex = y * channelStride + x;
      resultData[resultIndex] = channel0Data[channelIndex];
      resultData[resultIndex+1] = channel1Data[channelIndex];
      resultData[resultIndex+2] = channel2Data[channelIndex];
      resultData[resultIndex+3] = channel3Data[channelIndex];
    }
  }
}

void
FilterProcessing::DoPremultiplicationCalculation_Scalar(const IntSize& aSize,
                                     uint8_t* aTargetData, int32_t aTargetStride,
                                     uint8_t* aSourceData, int32_t aSourceStride)
{
  for (int32_t y = 0; y < aSize.height; y++) {
    for (int32_t x = 0; x < aSize.width; x++) {
      int32_t inputIndex = y * aSourceStride + 4 * x;
      int32_t targetIndex = y * aTargetStride + 4 * x;
      uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
        FastDivideBy255<uint8_t>(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alpha);
      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
        FastDivideBy255<uint8_t>(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alpha);
      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
        FastDivideBy255<uint8_t>(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alpha);
      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha;
    }
  }
}

void
FilterProcessing::DoUnpremultiplicationCalculation_Scalar(
                                 const IntSize& aSize,
                                 uint8_t* aTargetData, int32_t aTargetStride,
                                 uint8_t* aSourceData, int32_t aSourceStride)
{
  for (int32_t y = 0; y < aSize.height; y++) {
    for (int32_t x = 0; x < aSize.width; x++) {
      int32_t inputIndex = y * aSourceStride + 4 * x;
      int32_t targetIndex = y * aTargetStride + 4 * x;
      uint8_t alpha = aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
      uint16_t alphaFactor = sAlphaFactors[alpha];
      // inputColor * alphaFactor + 128 is guaranteed to fit into uint16_t
      // because the input is premultiplied and thus inputColor <= inputAlpha.
      // The maximum value this can attain is 65520 (which is less than 65535)
      // for color == alpha == 244:
      // 244 * sAlphaFactors[244] + 128 == 244 * 268 + 128 == 65520
      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
        (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alphaFactor + 128) >> 8;
      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
        (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alphaFactor + 128) >> 8;
      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
        (aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alphaFactor + 128) >> 8;
      aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] = alpha;
    }
  }
}

TemporaryRef<DataSourceSurface>
FilterProcessing::RenderTurbulence_Scalar(const IntSize &aSize, const Point &aOffset, const Size &aBaseFrequency,
                                          int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch, const Rect &aTileRect)
{
   return RenderTurbulence_SIMD<simd::Scalarf32x4_t,simd::Scalari32x4_t,simd::Scalaru8x16_t>(
     aSize, aOffset, aBaseFrequency, aSeed, aNumOctaves, aType, aStitch, aTileRect);
}

TemporaryRef<DataSourceSurface>
FilterProcessing::ApplyArithmeticCombine_Scalar(DataSourceSurface* aInput1, DataSourceSurface* aInput2, Float aK1, Float aK2, Float aK3, Float aK4)
{
  return ApplyArithmeticCombine_SIMD<simd::Scalari32x4_t,simd::Scalari16x8_t,simd::Scalaru8x16_t>(aInput1, aInput2, aK1, aK2, aK3, aK4);
}

} // namespace mozilla
} // namespace gfx