DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//
// Implement TimeStamp::Now() with POSIX clocks.
//
// The "tick" unit for POSIX clocks is simply a nanosecond, as this is
// the smallest unit of time representable by struct timespec.  That
// doesn't mean that a nanosecond is the resolution of TimeDurations
// obtained with this API; see TimeDuration::Resolution;
//

#include <sys/syscall.h>
#include <time.h>
#include <unistd.h>

#if defined(__DragonFly__) || defined(__FreeBSD__) \
    || defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/param.h>
#include <sys/sysctl.h>
#endif

#if defined(__DragonFly__) || defined(__FreeBSD__)
#include <sys/user.h>
#endif

#if defined(__NetBSD__)
#undef KERN_PROC
#define KERN_PROC KERN_PROC2
#define KINFO_PROC struct kinfo_proc2
#else
#define KINFO_PROC struct kinfo_proc
#endif

#if defined(__DragonFly__)
#define KP_START_SEC kp_start.tv_sec
#define KP_START_USEC kp_start.tv_usec
#elif defined(__FreeBSD__)
#define KP_START_SEC ki_start.tv_sec
#define KP_START_USEC ki_start.tv_usec
#else
#define KP_START_SEC p_ustart_sec
#define KP_START_USEC p_ustart_usec
#endif

#include "mozilla/TimeStamp.h"
#include "nsCRT.h"
#include "prprf.h"
#include "prthread.h"

// Estimate of the smallest duration of time we can measure.
static uint64_t sResolution;
static uint64_t sResolutionSigDigs;

static const uint16_t kNsPerUs   =       1000;
static const uint64_t kNsPerMs   =    1000000;
static const uint64_t kNsPerSec  = 1000000000; 
static const double kNsPerMsd    =    1000000.0;
static const double kNsPerSecd   = 1000000000.0;

static uint64_t
TimespecToNs(const struct timespec& ts)
{
  uint64_t baseNs = uint64_t(ts.tv_sec) * kNsPerSec;
  return baseNs + uint64_t(ts.tv_nsec);
}

static uint64_t
ClockTimeNs()
{
  struct timespec ts;
  // this can't fail: we know &ts is valid, and TimeStamp::Startup()
  // checks that CLOCK_MONOTONIC is supported (and aborts if not)
  clock_gettime(CLOCK_MONOTONIC, &ts);

  // tv_sec is defined to be relative to an arbitrary point in time,
  // but it would be madness for that point in time to be earlier than
  // the Epoch.  So we can safely assume that even if time_t is 32
  // bits, tv_sec won't overflow while the browser is open.  Revisit
  // this argument if we're still building with 32-bit time_t around
  // the year 2037.
  return TimespecToNs(ts);
}

static uint64_t
ClockResolutionNs()
{
  // NB: why not rely on clock_getres()?  Two reasons: (i) it might
  // lie, and (ii) it might return an "ideal" resolution that while
  // theoretically true, could never be measured in practice.  Since
  // clock_gettime() likely involves a system call on your platform,
  // the "actual" timing resolution shouldn't be lower than syscall
  // overhead.

  uint64_t start = ClockTimeNs();
  uint64_t end = ClockTimeNs();
  uint64_t minres = (end - start);

  // 10 total trials is arbitrary: what we're trying to avoid by
  // looping is getting unlucky and being interrupted by a context
  // switch or signal, or being bitten by paging/cache effects
  for (int i = 0; i < 9; ++i) {
    start = ClockTimeNs();
    end = ClockTimeNs();

    uint64_t candidate = (start - end);
    if (candidate < minres)
      minres = candidate;
  }

  if (0 == minres) {
    // measurable resolution is either incredibly low, ~1ns, or very
    // high.  fall back on clock_getres()
    struct timespec ts;
    if (0 == clock_getres(CLOCK_MONOTONIC, &ts)) {
      minres = TimespecToNs(ts);
    }
  }

  if (0 == minres) {
    // clock_getres probably failed.  fall back on NSPR's resolution
    // assumption
    minres = 1 * kNsPerMs;
  }

  return minres;
}

namespace mozilla {

double
TimeDuration::ToSeconds() const
{
  return double(mValue) / kNsPerSecd;
}

double
TimeDuration::ToSecondsSigDigits() const
{
  // don't report a value < mResolution ...
  int64_t valueSigDigs = sResolution * (mValue / sResolution);
  // and chop off insignificant digits
  valueSigDigs = sResolutionSigDigs * (valueSigDigs / sResolutionSigDigs);
  return double(valueSigDigs) / kNsPerSecd;
}

TimeDuration
TimeDuration::FromMilliseconds(double aMilliseconds)
{
  return TimeDuration::FromTicks(aMilliseconds * kNsPerMsd);
}

TimeDuration
TimeDuration::Resolution()
{
  return TimeDuration::FromTicks(int64_t(sResolution));
}

struct TimeStampInitialization
{
  TimeStampInitialization() {
    TimeStamp::Startup();
  }
  ~TimeStampInitialization() {
    TimeStamp::Shutdown();
  }
};

static TimeStampInitialization initOnce;
static bool gInitialized = false;

nsresult
TimeStamp::Startup()
{
  if (gInitialized)
    return NS_OK;

  struct timespec dummy;
  if (0 != clock_gettime(CLOCK_MONOTONIC, &dummy))
      NS_RUNTIMEABORT("CLOCK_MONOTONIC is absent!");

  sResolution = ClockResolutionNs();

  // find the number of significant digits in sResolution, for the
  // sake of ToSecondsSigDigits()
  for (sResolutionSigDigs = 1;
       !(sResolutionSigDigs == sResolution
         || 10*sResolutionSigDigs > sResolution);
       sResolutionSigDigs *= 10);

  gInitialized = true;
  sFirstTimeStamp = TimeStamp::Now();
  sProcessCreation = TimeStamp();

  return NS_OK;
}

void
TimeStamp::Shutdown()
{
}

TimeStamp
TimeStamp::Now(bool aHighResolution)
{
  return TimeStamp(ClockTimeNs());
}

#if defined(LINUX) || defined(ANDROID)

// Calculates the amount of jiffies that have elapsed since boot and up to the
// starttime value of a specific process as found in its /proc/*/stat file.
// Returns 0 if an error occurred.

static uint64_t
JiffiesSinceBoot(const char *aFile)
{
  char stat[512];

  FILE *f = fopen(aFile, "r");
  if (!f)
    return 0;

  int n = fread(&stat, 1, sizeof(stat) - 1, f);

  fclose(f);

  if (n <= 0)
    return 0;

  stat[n] = 0;

  long long unsigned startTime = 0; // instead of uint64_t to keep GCC quiet
  char *s = strrchr(stat, ')');

  if (!s)
    return 0;

  int rv = sscanf(s + 2,
                  "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u "
                  "%*u %*u %*u %*d %*d %*d %*d %*d %*d %llu",
                  &startTime);

  if (rv != 1 || !startTime)
    return 0;

  return startTime;
}

// Computes the interval that has elapsed between the thread creation and the
// process creation by comparing the starttime fields in the respective
// /proc/*/stat files. The resulting value will be a good approximation of the
// process uptime. This value will be stored at the address pointed by aTime;
// if an error occurred 0 will be stored instead.

static void
ComputeProcessUptimeThread(void *aTime)
{
  uint64_t *uptime = static_cast<uint64_t *>(aTime);
  long hz = sysconf(_SC_CLK_TCK);

  *uptime = 0;

  if (!hz)
    return;

  char threadStat[40];
  sprintf(threadStat, "/proc/self/task/%d/stat", (pid_t) syscall(__NR_gettid));

  uint64_t threadJiffies = JiffiesSinceBoot(threadStat);
  uint64_t selfJiffies = JiffiesSinceBoot("/proc/self/stat");

  if (!threadJiffies || !selfJiffies)
    return;

  *uptime = ((threadJiffies - selfJiffies) * kNsPerSec) / hz;
}

// Computes and returns the process uptime in us on Linux & its derivatives.
// Returns 0 if an error was encountered.

uint64_t
TimeStamp::ComputeProcessUptime()
{
  uint64_t uptime = 0;
  PRThread *thread = PR_CreateThread(PR_USER_THREAD,
                                     ComputeProcessUptimeThread,
                                     &uptime,
                                     PR_PRIORITY_NORMAL,
                                     PR_LOCAL_THREAD,
                                     PR_JOINABLE_THREAD,
                                     0);

  PR_JoinThread(thread);

  return uptime / kNsPerUs;
}

#elif defined(__DragonFly__) || defined(__FreeBSD__) \
      || defined(__NetBSD__) || defined(__OpenBSD__)

// Computes and returns the process uptime in us on various BSD flavors.
// Returns 0 if an error was encountered.

uint64_t
TimeStamp::ComputeProcessUptime()
{
  struct timespec ts;
  int rv = clock_gettime(CLOCK_REALTIME, &ts);

  if (rv == -1) {
    return 0;
  }

  int mib[] = {
    CTL_KERN,
    KERN_PROC,
    KERN_PROC_PID,
    getpid(),
#if defined(__NetBSD__) || defined(__OpenBSD__)
    sizeof(KINFO_PROC),
    1,
#endif
  };
  u_int mibLen = sizeof(mib) / sizeof(mib[0]);

  KINFO_PROC proc;
  size_t bufferSize = sizeof(proc);
  rv = sysctl(mib, mibLen, &proc, &bufferSize, NULL, 0);

  if (rv == -1)
    return 0;

  uint64_t startTime = ((uint64_t)proc.KP_START_SEC * kNsPerSec)
    + (proc.KP_START_USEC * kNsPerUs);
  uint64_t now = ((uint64_t)ts.tv_sec * kNsPerSec) + ts.tv_nsec;

  if (startTime > now)
    return 0;

  return (now - startTime) / kNsPerUs;
}

#else

uint64_t
TimeStamp::ComputeProcessUptime()
{
  return 0;
}

#endif

} // namespace mozilla