DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "frontend/ParseNode-inl.h"

#include "builtin/Module.h"
#include "frontend/Parser.h"

#include "jscntxtinlines.h"

using namespace js;
using namespace js::frontend;

using mozilla::IsFinite;

/*
 * Asserts to verify assumptions behind pn_ macros.
 */
#define pn_offsetof(m)  offsetof(ParseNode, m)

JS_STATIC_ASSERT(pn_offsetof(pn_link) == pn_offsetof(dn_uses));

#undef pn_offsetof

#ifdef DEBUG
void
ParseNode::checkListConsistency()
{
    JS_ASSERT(isArity(PN_LIST));
    ParseNode **tail;
    uint32_t count = 0;
    if (pn_head) {
        ParseNode *pn, *last;
        for (pn = last = pn_head; pn; last = pn, pn = pn->pn_next, count++)
            ;
        tail = &last->pn_next;
    } else {
        tail = &pn_head;
    }
    JS_ASSERT(pn_tail == tail);
    JS_ASSERT(pn_count == count);
}
#endif

/* Add |node| to |parser|'s free node list. */
void
ParseNodeAllocator::freeNode(ParseNode *pn)
{
    /* Catch back-to-back dup recycles. */
    JS_ASSERT(pn != freelist);

    /*
     * It's too hard to clear these nodes from the AtomDefnMaps, etc. that
     * hold references to them, so we never free them. It's our caller's job to
     * recognize and process these, since their children do need to be dealt
     * with.
     */
    JS_ASSERT(!pn->isUsed());
    JS_ASSERT(!pn->isDefn());

#ifdef DEBUG
    /* Poison the node, to catch attempts to use it without initializing it. */
    memset(pn, 0xab, sizeof(*pn));
#endif

    pn->pn_next = freelist;
    freelist = pn;
}

namespace {

/*
 * A work pool of ParseNodes. The work pool is a stack, chained together
 * by nodes' pn_next fields. We use this to avoid creating deep C++ stacks
 * when recycling deep parse trees.
 *
 * Since parse nodes are probably allocated in something close to the order
 * they appear in a depth-first traversal of the tree, making the work pool
 * a stack should give us pretty good locality.
 */
class NodeStack {
  public:
    NodeStack() : top(NULL) { }
    bool empty() { return top == NULL; }
    void push(ParseNode *pn) {
        pn->pn_next = top;
        top = pn;
    }
    void pushUnlessNull(ParseNode *pn) { if (pn) push(pn); }
    /* Push the children of the PN_LIST node |pn| on the stack. */
    void pushList(ParseNode *pn) {
        /* This clobbers pn->pn_head if the list is empty; should be okay. */
        *pn->pn_tail = top;
        top = pn->pn_head;
    }
    ParseNode *pop() {
        JS_ASSERT(!empty());
        ParseNode *hold = top; /* my kingdom for a prog1 */
        top = top->pn_next;
        return hold;
    }
  private:
    ParseNode *top;
};

} /* anonymous namespace */

/*
 * Push the children of |pn| on |stack|. Return true if |pn| itself could be
 * safely recycled, or false if it must be cleaned later (pn_used and pn_defn
 * nodes, and all function nodes; see comments for CleanFunctionList in
 * SemanticAnalysis.cpp). Some callers want to free |pn|; others
 * (js::ParseNodeAllocator::prepareNodeForMutation) don't care about |pn|, and
 * just need to take care of its children.
 */
static bool
PushNodeChildren(ParseNode *pn, NodeStack *stack)
{
    switch (pn->getArity()) {
      case PN_CODE:
        /*
         * Function nodes are linked into the function box tree, and may appear
         * on method lists. Both of those lists are singly-linked, so trying to
         * update them now could result in quadratic behavior when recycling
         * trees containing many functions; and the lists can be very long. So
         * we put off cleaning the lists up until just before function
         * analysis, when we call CleanFunctionList.
         *
         * In fact, we can't recycle the parse node yet, either: it may appear
         * on a method list, and reusing the node would corrupt that. Instead,
         * we clear its pn_funbox pointer to mark it as deleted;
         * CleanFunctionList recycles it as well.
         *
         * We do recycle the nodes around it, though, so we must clear pointers
         * to them to avoid leaving dangling references where someone can find
         * them.
         */
        pn->pn_funbox = NULL;
        stack->pushUnlessNull(pn->pn_body);
        pn->pn_body = NULL;
        return false;

      case PN_NAME:
        /*
         * Because used/defn nodes appear in AtomDefnMaps and elsewhere, we
         * don't recycle them. (We'll recover their storage when we free the
         * temporary arena.) However, we do recycle the nodes around them, so
         * clean up the pointers to avoid dangling references. The top-level
         * decls table carries references to them that later iterations through
         * the compileScript loop may find, so they need to be neat.
         *
         * pn_expr and pn_lexdef share storage; the latter isn't an owning
         * reference.
         */
        if (!pn->isUsed()) {
            stack->pushUnlessNull(pn->pn_expr);
            pn->pn_expr = NULL;
        }
        return !pn->isUsed() && !pn->isDefn();

      case PN_LIST:
        pn->checkListConsistency();
        stack->pushList(pn);
        break;
      case PN_TERNARY:
        stack->pushUnlessNull(pn->pn_kid1);
        stack->pushUnlessNull(pn->pn_kid2);
        stack->pushUnlessNull(pn->pn_kid3);
        break;
      case PN_BINARY:
        if (pn->pn_left != pn->pn_right)
            stack->pushUnlessNull(pn->pn_left);
        stack->pushUnlessNull(pn->pn_right);
        break;
      case PN_UNARY:
        stack->pushUnlessNull(pn->pn_kid);
        break;
      case PN_NULLARY:
        return !pn->isUsed() && !pn->isDefn();
      default:
        ;
    }

    return true;
}

/*
 * Prepare |pn| to be mutated in place into a new kind of node. Recycle all
 * |pn|'s recyclable children (but not |pn| itself!), and disconnect it from
 * metadata structures (the function box tree).
 */
void
ParseNodeAllocator::prepareNodeForMutation(ParseNode *pn)
{
    if (!pn->isArity(PN_NULLARY)) {
        /* Put |pn|'s children (but not |pn| itself) on a work stack. */
        NodeStack stack;
        PushNodeChildren(pn, &stack);
        /*
         * For each node on the work stack, push its children on the work stack,
         * and free the node if we can.
         */
        while (!stack.empty()) {
            pn = stack.pop();
            if (PushNodeChildren(pn, &stack))
                freeNode(pn);
        }
    }
}

/*
 * Return the nodes in the subtree |pn| to the parser's free node list, for
 * reallocation.
 */
ParseNode *
ParseNodeAllocator::freeTree(ParseNode *pn)
{
    if (!pn)
        return NULL;

    ParseNode *savedNext = pn->pn_next;

    NodeStack stack;
    for (;;) {
        if (PushNodeChildren(pn, &stack))
            freeNode(pn);
        if (stack.empty())
            break;
        pn = stack.pop();
    }

    return savedNext;
}

/*
 * Allocate a ParseNode from parser's node freelist or, failing that, from
 * cx's temporary arena.
 */
void *
ParseNodeAllocator::allocNode()
{
    if (ParseNode *pn = freelist) {
        freelist = pn->pn_next;
        return pn;
    }

    void *p = alloc.alloc(sizeof (ParseNode));
    if (!p)
        js_ReportOutOfMemory(cx);
    return p;
}

/* used only by static create methods of subclasses */

ParseNode *
ParseNode::create(ParseNodeKind kind, ParseNodeArity arity, FullParseHandler *handler)
{
    const Token &tok = handler->currentToken();
    return handler->new_<ParseNode>(kind, JSOP_NOP, arity, tok.pos);
}

ParseNode *
ParseNode::append(ParseNodeKind kind, JSOp op, ParseNode *left, ParseNode *right,
                  FullParseHandler *handler)
{
    if (!left || !right)
        return NULL;

    JS_ASSERT(left->isKind(kind) && left->isOp(op) && (js_CodeSpec[op].format & JOF_LEFTASSOC));

    ListNode *list;
    if (left->pn_arity == PN_LIST) {
        list = &left->as<ListNode>();
    } else {
        ParseNode *pn1 = left->pn_left, *pn2 = left->pn_right;
        list = handler->new_<ListNode>(kind, op, pn1);
        if (!list)
            return NULL;
        list->append(pn2);
        if (kind == PNK_ADD) {
            if (pn1->isKind(PNK_STRING))
                list->pn_xflags |= PNX_STRCAT;
            else if (!pn1->isKind(PNK_NUMBER))
                list->pn_xflags |= PNX_CANTFOLD;
            if (pn2->isKind(PNK_STRING))
                list->pn_xflags |= PNX_STRCAT;
            else if (!pn2->isKind(PNK_NUMBER))
                list->pn_xflags |= PNX_CANTFOLD;
        }
    }

    list->append(right);
    list->pn_pos.end = right->pn_pos.end;
    if (kind == PNK_ADD) {
        if (right->isKind(PNK_STRING))
            list->pn_xflags |= PNX_STRCAT;
        else if (!right->isKind(PNK_NUMBER))
            list->pn_xflags |= PNX_CANTFOLD;
    }

    return list;
}

ParseNode *
ParseNode::newBinaryOrAppend(ParseNodeKind kind, JSOp op, ParseNode *left, ParseNode *right,
                             FullParseHandler *handler, ParseContext<FullParseHandler> *pc,
                             bool foldConstants)
{
    if (!left || !right)
        return NULL;

    /*
     * Ensure that the parse tree is faithful to the source when "use asm" (for
     * the purpose of type checking).
     */
    if (pc->useAsmOrInsideUseAsm())
        return handler->new_<BinaryNode>(kind, op, left, right);

    /*
     * Flatten a left-associative (left-heavy) tree of a given operator into
     * a list to reduce js::FoldConstants and js::frontend::EmitTree recursion.
     */
    if (left->isKind(kind) && left->isOp(op) && (js_CodeSpec[op].format & JOF_LEFTASSOC))
        return append(kind, op, left, right, handler);

    /*
     * Fold constant addition immediately, to conserve node space and, what's
     * more, so js::FoldConstants never sees mixed addition and concatenation
     * operations with more than one leading non-string operand in a PN_LIST
     * generated for expressions such as 1 + 2 + "pt" (which should evaluate
     * to "3pt", not "12pt").
     */
    if (kind == PNK_ADD &&
        left->isKind(PNK_NUMBER) &&
        right->isKind(PNK_NUMBER) &&
        foldConstants)
    {
        left->pn_dval += right->pn_dval;
        left->pn_pos.end = right->pn_pos.end;
        handler->freeTree(right);
        return left;
    }

    return handler->new_<BinaryNode>(kind, op, left, right);
}

const char *
Definition::kindString(Kind kind)
{
    static const char * const table[] = {
        "", js_var_str, js_const_str, js_let_str, js_function_str, "argument", "unknown"
    };

    JS_ASSERT(unsigned(kind) <= unsigned(ARG));
    return table[kind];
}

namespace js {
namespace frontend {

#if JS_HAS_DESTRUCTURING

/*
 * This function assumes the cloned tree is for use in the same statement and
 * binding context as the original tree.
 */
template <>
ParseNode *
Parser<FullParseHandler>::cloneParseTree(ParseNode *opn)
{
    JS_CHECK_RECURSION(context, return NULL);

    ParseNode *pn = handler.new_<ParseNode>(opn->getKind(), opn->getOp(), opn->getArity(),
                                            opn->pn_pos);
    if (!pn)
        return NULL;
    pn->setInParens(opn->isInParens());
    pn->setDefn(opn->isDefn());
    pn->setUsed(opn->isUsed());

    switch (pn->getArity()) {
#define NULLCHECK(e)    JS_BEGIN_MACRO if (!(e)) return NULL; JS_END_MACRO

      case PN_CODE:
        if (pn->getKind() == PNK_MODULE) {
            MOZ_ASSUME_UNREACHABLE("module nodes cannot be cloned");
        }
        NULLCHECK(pn->pn_funbox = newFunctionBox(pn, opn->pn_funbox->function(), pc,
                                                 Directives(/* strict = */ opn->pn_funbox->strict),
                                                 opn->pn_funbox->generatorKind()));
        NULLCHECK(pn->pn_body = cloneParseTree(opn->pn_body));
        pn->pn_cookie = opn->pn_cookie;
        pn->pn_dflags = opn->pn_dflags;
        pn->pn_blockid = opn->pn_blockid;
        break;

      case PN_LIST:
        pn->makeEmpty();
        for (ParseNode *opn2 = opn->pn_head; opn2; opn2 = opn2->pn_next) {
            ParseNode *pn2;
            NULLCHECK(pn2 = cloneParseTree(opn2));
            pn->append(pn2);
        }
        pn->pn_xflags = opn->pn_xflags;
        break;

      case PN_TERNARY:
        NULLCHECK(pn->pn_kid1 = cloneParseTree(opn->pn_kid1));
        NULLCHECK(pn->pn_kid2 = cloneParseTree(opn->pn_kid2));
        NULLCHECK(pn->pn_kid3 = cloneParseTree(opn->pn_kid3));
        break;

      case PN_BINARY:
        NULLCHECK(pn->pn_left = cloneParseTree(opn->pn_left));
        if (opn->pn_right != opn->pn_left)
            NULLCHECK(pn->pn_right = cloneParseTree(opn->pn_right));
        else
            pn->pn_right = pn->pn_left;
        pn->pn_iflags = opn->pn_iflags;
        break;

      case PN_UNARY:
        NULLCHECK(pn->pn_kid = cloneParseTree(opn->pn_kid));
        pn->pn_hidden = opn->pn_hidden;
        break;

      case PN_NAME:
        // PN_NAME could mean several arms in pn_u, so copy the whole thing.
        pn->pn_u = opn->pn_u;
        if (opn->isUsed()) {
            /*
             * The old name is a use of its pn_lexdef. Make the clone also be a
             * use of that definition.
             */
            Definition *dn = pn->pn_lexdef;

            pn->pn_link = dn->dn_uses;
            dn->dn_uses = pn;
        } else if (opn->pn_expr) {
            NULLCHECK(pn->pn_expr = cloneParseTree(opn->pn_expr));

            /*
             * If the old name is a definition, the new one has pn_defn set.
             * Make the old name a use of the new node.
             */
            if (opn->isDefn()) {
                opn->setDefn(false);
                handler.linkUseToDef(opn, (Definition *) pn);
            }
        }
        break;

      case PN_NULLARY:
        pn->pn_u = opn->pn_u;
        break;

#undef NULLCHECK
    }
    return pn;
}

#endif /* JS_HAS_DESTRUCTURING */

/*
 * Used by Parser::forStatement and comprehensionTail to clone the TARGET in
 *   for (var/const/let TARGET in EXPR)
 *
 * opn must be the pn_head of a node produced by Parser::variables, so its form
 * is known to be LHS = NAME | [LHS] | {id:LHS}.
 *
 * The cloned tree is for use only in the same statement and binding context as
 * the original tree.
 */
template <>
ParseNode *
Parser<FullParseHandler>::cloneLeftHandSide(ParseNode *opn)
{
    ParseNode *pn = handler.new_<ParseNode>(opn->getKind(), opn->getOp(), opn->getArity(),
                                            opn->pn_pos);
    if (!pn)
        return NULL;
    pn->setInParens(opn->isInParens());
    pn->setDefn(opn->isDefn());
    pn->setUsed(opn->isUsed());

#if JS_HAS_DESTRUCTURING
    if (opn->isArity(PN_LIST)) {
        JS_ASSERT(opn->isKind(PNK_ARRAY) || opn->isKind(PNK_OBJECT));
        pn->makeEmpty();
        for (ParseNode *opn2 = opn->pn_head; opn2; opn2 = opn2->pn_next) {
            ParseNode *pn2;
            if (opn->isKind(PNK_OBJECT)) {
                JS_ASSERT(opn2->isArity(PN_BINARY));
                JS_ASSERT(opn2->isKind(PNK_COLON));

                ParseNode *tag = cloneParseTree(opn2->pn_left);
                if (!tag)
                    return NULL;
                ParseNode *target = cloneLeftHandSide(opn2->pn_right);
                if (!target)
                    return NULL;

                pn2 = handler.new_<BinaryNode>(PNK_COLON, JSOP_INITPROP, opn2->pn_pos, tag, target);
            } else if (opn2->isArity(PN_NULLARY)) {
                JS_ASSERT(opn2->isKind(PNK_ELISION));
                pn2 = cloneParseTree(opn2);
            } else {
                pn2 = cloneLeftHandSide(opn2);
            }

            if (!pn2)
                return NULL;
            pn->append(pn2);
        }
        pn->pn_xflags = opn->pn_xflags;
        return pn;
    }
#endif

    JS_ASSERT(opn->isArity(PN_NAME));
    JS_ASSERT(opn->isKind(PNK_NAME));

    /* If opn is a definition or use, make pn a use. */
    pn->pn_u.name = opn->pn_u.name;
    pn->setOp(JSOP_SETNAME);
    if (opn->isUsed()) {
        Definition *dn = pn->pn_lexdef;

        pn->pn_link = dn->dn_uses;
        dn->dn_uses = pn;
    } else {
        pn->pn_expr = NULL;
        if (opn->isDefn()) {
            /* We copied some definition-specific state into pn. Clear it out. */
            pn->pn_cookie.makeFree();
            pn->pn_dflags &= ~PND_BOUND;
            pn->setDefn(false);

            handler.linkUseToDef(pn, (Definition *) opn);
        }
    }
    return pn;
}

} /* namespace frontend */
} /* namespace js */

#ifdef DEBUG

static const char * const parseNodeNames[] = {
#define STRINGIFY(name) #name,
    FOR_EACH_PARSE_NODE_KIND(STRINGIFY)
#undef STRINGIFY
};

void
frontend::DumpParseTree(ParseNode *pn, int indent)
{
    if (pn == NULL)
        fprintf(stderr, "#NULL");
    else
        pn->dump(indent);
}

static void
IndentNewLine(int indent)
{
    fputc('\n', stderr);
    for (int i = 0; i < indent; ++i)
        fputc(' ', stderr);
}

void
ParseNode::dump()
{
    dump(0);
    fputc('\n', stderr);
}

void
ParseNode::dump(int indent)
{
    switch (pn_arity) {
      case PN_NULLARY:
        ((NullaryNode *) this)->dump();
        break;
      case PN_UNARY:
        ((UnaryNode *) this)->dump(indent);
        break;
      case PN_BINARY:
        ((BinaryNode *) this)->dump(indent);
        break;
      case PN_TERNARY:
        ((TernaryNode *) this)->dump(indent);
        break;
      case PN_CODE:
        ((CodeNode *) this)->dump(indent);
        break;
      case PN_LIST:
        ((ListNode *) this)->dump(indent);
        break;
      case PN_NAME:
        ((NameNode *) this)->dump(indent);
        break;
      default:
        fprintf(stderr, "#<BAD NODE %p, kind=%u, arity=%u>",
                (void *) this, unsigned(getKind()), unsigned(pn_arity));
        break;
    }
}

void
NullaryNode::dump()
{
    switch (getKind()) {
      case PNK_TRUE:  fprintf(stderr, "#true");  break;
      case PNK_FALSE: fprintf(stderr, "#false"); break;
      case PNK_NULL:  fprintf(stderr, "#null");  break;

      case PNK_NUMBER: {
        ToCStringBuf cbuf;
        const char *cstr = NumberToCString(NULL, &cbuf, pn_dval);
        if (!IsFinite(pn_dval))
            fputc('#', stderr);
        if (cstr)
            fprintf(stderr, "%s", cstr);
        else
            fprintf(stderr, "%g", pn_dval);
        break;
      }

      case PNK_STRING:
        JSString::dumpChars(pn_atom->chars(), pn_atom->length());
        break;

      default:
        fprintf(stderr, "(%s)", parseNodeNames[getKind()]);
    }
}

void
UnaryNode::dump(int indent)
{
    const char *name = parseNodeNames[getKind()];
    fprintf(stderr, "(%s ", name);
    indent += strlen(name) + 2;
    DumpParseTree(pn_kid, indent);
    fprintf(stderr, ")");
}

void
BinaryNode::dump(int indent)
{
    const char *name = parseNodeNames[getKind()];
    fprintf(stderr, "(%s ", name);
    indent += strlen(name) + 2;
    DumpParseTree(pn_left, indent);
    IndentNewLine(indent);
    DumpParseTree(pn_right, indent);
    fprintf(stderr, ")");
}

void
TernaryNode::dump(int indent)
{
    const char *name = parseNodeNames[getKind()];
    fprintf(stderr, "(%s ", name);
    indent += strlen(name) + 2;
    DumpParseTree(pn_kid1, indent);
    IndentNewLine(indent);
    DumpParseTree(pn_kid2, indent);
    IndentNewLine(indent);
    DumpParseTree(pn_kid3, indent);
    fprintf(stderr, ")");
}

void
CodeNode::dump(int indent)
{
    const char *name = parseNodeNames[getKind()];
    fprintf(stderr, "(%s ", name);
    indent += strlen(name) + 2;
    DumpParseTree(pn_body, indent);
    fprintf(stderr, ")");
}

void
ListNode::dump(int indent)
{
    const char *name = parseNodeNames[getKind()];
    fprintf(stderr, "(%s [", name);
    if (pn_head != NULL) {
        indent += strlen(name) + 3;
        DumpParseTree(pn_head, indent);
        ParseNode *pn = pn_head->pn_next;
        while (pn != NULL) {
            IndentNewLine(indent);
            DumpParseTree(pn, indent);
            pn = pn->pn_next;
        }
    }
    fprintf(stderr, "])");
}

void
NameNode::dump(int indent)
{
    if (isKind(PNK_NAME) || isKind(PNK_DOT)) {
        if (isKind(PNK_DOT))
            fprintf(stderr, "(.");

        if (!pn_atom) {
            fprintf(stderr, "#<null name>");
        } else {
            const jschar *s = pn_atom->chars();
            size_t len = pn_atom->length();
            if (len == 0)
                fprintf(stderr, "#<zero-length name>");
            for (size_t i = 0; i < len; i++) {
                if (s[i] > 32 && s[i] < 127)
                    fputc(s[i], stderr);
                else if (s[i] <= 255)
                    fprintf(stderr, "\\x%02x", (unsigned int) s[i]);
                else
                    fprintf(stderr, "\\u%04x", (unsigned int) s[i]);
            }
        }

        if (isKind(PNK_DOT)) {
            fputc(' ', stderr);
            DumpParseTree(expr(), indent + 2);
            fputc(')', stderr);
        }
        return;
    }

    JS_ASSERT(!isUsed());
    const char *name = parseNodeNames[getKind()];
    if (isUsed())
        fprintf(stderr, "(%s)", name);
    else {
        fprintf(stderr, "(%s ", name);
        indent += strlen(name) + 2;
        DumpParseTree(expr(), indent);
        fprintf(stderr, ")");
    }
}
#endif

ObjectBox::ObjectBox(JSObject *object, ObjectBox* traceLink)
  : object(object),
    traceLink(traceLink),
    emitLink(NULL)
{
    JS_ASSERT(!object->is<JSFunction>());
}

ObjectBox::ObjectBox(JSFunction *function, ObjectBox* traceLink)
  : object(function),
    traceLink(traceLink),
    emitLink(NULL)
{
    JS_ASSERT(object->is<JSFunction>());
    JS_ASSERT(asFunctionBox()->function() == function);
}

ModuleBox *
ObjectBox::asModuleBox()
{
    JS_ASSERT(isModuleBox());
    return static_cast<ModuleBox *>(this);
}

FunctionBox *
ObjectBox::asFunctionBox()
{
    JS_ASSERT(isFunctionBox());
    return static_cast<FunctionBox *>(this);
}

ObjectBox::ObjectBox(Module *module, ObjectBox* traceLink)
  : object(module),
    traceLink(traceLink),
    emitLink(NULL)
{
    JS_ASSERT(object->is<Module>());
}

void
ObjectBox::trace(JSTracer *trc)
{
    ObjectBox *box = this;
    while (box) {
        MarkObjectRoot(trc, &box->object, "parser.object");
        if (box->isModuleBox())
            box->asModuleBox()->bindings.trace(trc);
        if (box->isFunctionBox())
            box->asFunctionBox()->bindings.trace(trc);
        box = box->traceLink;
    }
}