DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (31ec81b5d7bb)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef ds_LifoAlloc_h
#define ds_LifoAlloc_h

#include "mozilla/DebugOnly.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/MemoryChecking.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/PodOperations.h"
#include "mozilla/TemplateLib.h"
#include "mozilla/TypeTraits.h"

// This data structure supports stacky LIFO allocation (mark/release and
// LifoAllocScope). It does not maintain one contiguous segment; instead, it
// maintains a bunch of linked memory segments. In order to prevent malloc/free
// thrashing, unused segments are deallocated when garbage collection occurs.

#include "jsutil.h"

namespace js {

namespace detail {

static const size_t LIFO_ALLOC_ALIGN = 8;

JS_ALWAYS_INLINE
char *
AlignPtr(void *orig)
{
    static_assert(mozilla::tl::FloorLog2<LIFO_ALLOC_ALIGN>::value ==
                  mozilla::tl::CeilingLog2<LIFO_ALLOC_ALIGN>::value,
                  "LIFO_ALLOC_ALIGN must be a power of two");

    char *result = (char *) ((uintptr_t(orig) + (LIFO_ALLOC_ALIGN - 1)) & (~LIFO_ALLOC_ALIGN + 1));
    JS_ASSERT(uintptr_t(result) % LIFO_ALLOC_ALIGN == 0);
    return result;
}

// Header for a chunk of memory wrangled by the LifoAlloc.
class BumpChunk
{
    char        *bump;          // start of the available data
    char        *limit;         // end of the data
    BumpChunk   *next_;         // the next BumpChunk
    size_t      bumpSpaceSize;  // size of the data area

    char *headerBase() { return reinterpret_cast<char *>(this); }
    char *bumpBase() const { return limit - bumpSpaceSize; }

    explicit BumpChunk(size_t bumpSpaceSize)
      : bump(reinterpret_cast<char *>(MOZ_THIS_IN_INITIALIZER_LIST()) + sizeof(BumpChunk)),
        limit(bump + bumpSpaceSize),
        next_(NULL), bumpSpaceSize(bumpSpaceSize)
    {
        JS_ASSERT(bump == AlignPtr(bump));
    }

    void setBump(void *ptr) {
        JS_ASSERT(bumpBase() <= ptr);
        JS_ASSERT(ptr <= limit);
#if defined(DEBUG) || defined(MOZ_HAVE_MEM_CHECKS)
        char* prevBump = bump;
#endif
        bump = static_cast<char *>(ptr);
#ifdef DEBUG
        JS_ASSERT(contains(prevBump));

        // Clobber the now-free space.
        if (prevBump > bump)
            memset(bump, 0xcd, prevBump - bump);
#endif

        // Poison/Unpoison memory that we just free'd/allocated.
#if defined(MOZ_HAVE_MEM_CHECKS)
        if (prevBump > bump)
            MOZ_MAKE_MEM_NOACCESS(bump, prevBump - bump);
        else if (bump > prevBump)
            MOZ_MAKE_MEM_UNDEFINED(prevBump, bump - prevBump);
#endif
    }

  public:
    BumpChunk *next() const { return next_; }
    void setNext(BumpChunk *succ) { next_ = succ; }

    size_t used() const { return bump - bumpBase(); }

    void *start() const { return bumpBase(); }
    void *end() const { return limit; }

    size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) {
        return mallocSizeOf(this);
    }

    size_t computedSizeOfIncludingThis() {
        return limit - headerBase();
    }

    void resetBump() {
        setBump(headerBase() + sizeof(BumpChunk));
    }

    void *mark() const { return bump; }

    void release(void *mark) {
        JS_ASSERT(contains(mark));
        JS_ASSERT(mark <= bump);
        setBump(mark);
    }

    bool contains(void *mark) const {
        return bumpBase() <= mark && mark <= limit;
    }

    bool canAlloc(size_t n);

    size_t unused() {
        return limit - AlignPtr(bump);
    }

    // Try to perform an allocation of size |n|, return null if not possible.
    JS_ALWAYS_INLINE
    void *tryAlloc(size_t n) {
        char *aligned = AlignPtr(bump);
        char *newBump = aligned + n;

        if (newBump > limit)
            return NULL;

        // Check for overflow.
        if (JS_UNLIKELY(newBump < bump))
            return NULL;

        JS_ASSERT(canAlloc(n)); // Ensure consistency between "can" and "try".
        setBump(newBump);
        return aligned;
    }

    void *allocInfallible(size_t n) {
        void *result = tryAlloc(n);
        JS_ASSERT(result);
        return result;
    }

    static BumpChunk *new_(size_t chunkSize);
    static void delete_(BumpChunk *chunk);
};

} // namespace detail

// LIFO bump allocator: used for phase-oriented and fast LIFO allocations.
//
// Note: |latest| is not necessary "last". We leave BumpChunks latent in the
// chain after they've been released to avoid thrashing before a GC.
class LifoAlloc
{
    typedef detail::BumpChunk BumpChunk;

    BumpChunk   *first;
    BumpChunk   *latest;
    BumpChunk   *last;
    size_t      markCount;
    size_t      defaultChunkSize_;
    size_t      curSize_;
    size_t      peakSize_;

    void operator=(const LifoAlloc &) MOZ_DELETE;
    LifoAlloc(const LifoAlloc &) MOZ_DELETE;

    // Return a BumpChunk that can perform an allocation of at least size |n|
    // and add it to the chain appropriately.
    //
    // Side effect: if retval is non-null, |first| and |latest| are initialized
    // appropriately.
    BumpChunk *getOrCreateChunk(size_t n);

    void reset(size_t defaultChunkSize) {
        JS_ASSERT(mozilla::RoundUpPow2(defaultChunkSize) == defaultChunkSize);
        first = latest = last = NULL;
        defaultChunkSize_ = defaultChunkSize;
        markCount = 0;
        curSize_ = 0;
    }

    // Append unused chunks to the end of this LifoAlloc.
    void appendUnused(BumpChunk *start, BumpChunk *end) {
        JS_ASSERT(start && end);
        if (last)
            last->setNext(start);
        else
            first = latest = start;
        last = end;
    }

    // Append used chunks to the end of this LifoAlloc. We act as if all the
    // chunks in |this| are used, even if they're not, so memory may be wasted.
    void appendUsed(BumpChunk *start, BumpChunk *latest, BumpChunk *end) {
        JS_ASSERT(start && latest &&  end);
        if (last)
            last->setNext(start);
        else
            first = latest = start;
        last = end;
        this->latest = latest;
    }

    void incrementCurSize(size_t size) {
        curSize_ += size;
        if (curSize_ > peakSize_)
            peakSize_ = curSize_;
    }
    void decrementCurSize(size_t size) {
        JS_ASSERT(curSize_ >= size);
        curSize_ -= size;
    }

  public:
    explicit LifoAlloc(size_t defaultChunkSize)
      : peakSize_(0)
    {
        reset(defaultChunkSize);
    }

    // Steal allocated chunks from |other|.
    void steal(LifoAlloc *other) {
        JS_ASSERT(!other->markCount);

        // Copy everything from |other| to |this| except for |peakSize_|, which
        // requires some care.
        size_t oldPeakSize = peakSize_;
        mozilla::PodAssign(this, other);
        peakSize_ = Max(oldPeakSize, curSize_);

        other->reset(defaultChunkSize_);
    }

    // Append all chunks from |other|. They are removed from |other|.
    void transferFrom(LifoAlloc *other);

    // Append unused chunks from |other|. They are removed from |other|.
    void transferUnusedFrom(LifoAlloc *other);

    ~LifoAlloc() { freeAll(); }

    size_t defaultChunkSize() const { return defaultChunkSize_; }

    // Frees all held memory.
    void freeAll();

    static const unsigned HUGE_ALLOCATION = 50 * 1024 * 1024;
    void freeAllIfHugeAndUnused() {
        if (markCount == 0 && curSize_ > HUGE_ALLOCATION)
            freeAll();
    }

    JS_ALWAYS_INLINE
    void *alloc(size_t n) {
        JS_OOM_POSSIBLY_FAIL();

        void *result;
        if (latest && (result = latest->tryAlloc(n)))
            return result;

        if (!getOrCreateChunk(n))
            return NULL;

        return latest->allocInfallible(n);
    }

    JS_ALWAYS_INLINE
    void *allocInfallible(size_t n) {
        void *result;
        if (latest && (result = latest->tryAlloc(n)))
            return result;

        mozilla::DebugOnly<BumpChunk *> chunk = getOrCreateChunk(n);
        JS_ASSERT(chunk);

        return latest->allocInfallible(n);
    }

    // Ensures that enough space exists to satisfy N bytes worth of
    // allocation requests, not necessarily contiguous. Note that this does
    // not guarantee a successful single allocation of N bytes.
    JS_ALWAYS_INLINE
    bool ensureUnusedApproximate(size_t n) {
        size_t total = 0;
        for (BumpChunk *chunk = latest; chunk; chunk = chunk->next()) {
            total += chunk->unused();
            if (total >= n)
                return true;
        }
        BumpChunk *latestBefore = latest;
        if (!getOrCreateChunk(n))
            return false;
        if (latestBefore)
            latest = latestBefore;
        return true;
    }

    template <typename T>
    T *newArray(size_t count) {
        JS_STATIC_ASSERT(mozilla::IsPod<T>::value);
        return newArrayUninitialized<T>(count);
    }

    // Create an array with uninitialized elements of type |T|.
    // The caller is responsible for initialization.
    template <typename T>
    T *newArrayUninitialized(size_t count) {
        if (count & mozilla::tl::MulOverflowMask<sizeof(T)>::value)
            return NULL;
        return static_cast<T *>(alloc(sizeof(T) * count));
    }

    class Mark {
        BumpChunk *chunk;
        void *markInChunk;
        friend class LifoAlloc;
        Mark(BumpChunk *chunk, void *markInChunk) : chunk(chunk), markInChunk(markInChunk) {}
      public:
        Mark() : chunk(NULL), markInChunk(NULL) {}
    };

    Mark mark() {
        markCount++;
        return latest ? Mark(latest, latest->mark()) : Mark();
    }

    void release(Mark mark) {
        markCount--;
        if (!mark.chunk) {
            latest = first;
            if (latest)
                latest->resetBump();
        } else {
            latest = mark.chunk;
            latest->release(mark.markInChunk);
        }
    }

    void releaseAll() {
        JS_ASSERT(!markCount);
        latest = first;
        if (latest)
            latest->resetBump();
    }

    // Get the total "used" (occupied bytes) count for the arena chunks.
    size_t used() const {
        size_t accum = 0;
        for (BumpChunk *chunk = first; chunk; chunk = chunk->next()) {
            accum += chunk->used();
            if (chunk == latest)
                break;
        }
        return accum;
    }

    // Return true if the LifoAlloc does not currently contain any allocations.
    bool isEmpty() const {
        return !latest || !latest->used();
    }

    // Return the number of bytes remaining to allocate in the current chunk.
    // e.g. How many bytes we can allocate before needing a new block.
    size_t availableInCurrentChunk() const {
        if (!latest)
            return 0;
        return latest->unused();
    }

    // Get the total size of the arena chunks (including unused space).
    size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
        size_t n = 0;
        for (BumpChunk *chunk = first; chunk; chunk = chunk->next())
            n += chunk->sizeOfIncludingThis(mallocSizeOf);
        return n;
    }

    // Like sizeOfExcludingThis(), but includes the size of the LifoAlloc itself.
    size_t sizeOfIncludingThis(mozilla::MallocSizeOf mallocSizeOf) const {
        return mallocSizeOf(this) + sizeOfExcludingThis(mallocSizeOf);
    }

    // Get the peak size of the arena chunks (including unused space and
    // bookkeeping space).
    size_t peakSizeOfExcludingThis() const { return peakSize_; }

    // Doesn't perform construction; useful for lazily-initialized POD types.
    template <typename T>
    JS_ALWAYS_INLINE
    T *newPod() {
        return static_cast<T *>(alloc(sizeof(T)));
    }

    JS_DECLARE_NEW_METHODS(new_, alloc, JS_ALWAYS_INLINE)

    // A mutable enumeration of the allocated data.
    class Enum
    {
        friend class LifoAlloc;
        friend class detail::BumpChunk;

        LifoAlloc *alloc_;  // The LifoAlloc being traversed.
        BumpChunk *chunk_;  // The current chunk.
        char *position_;    // The current position (must be within chunk_).

        // If there is not enough room in the remaining block for |size|,
        // advance to the next block and update the position.
        void ensureSpaceAndAlignment(size_t size) {
            JS_ASSERT(!empty());
            char *aligned = detail::AlignPtr(position_);
            if (aligned + size > chunk_->end()) {
                chunk_ = chunk_->next();
                position_ = static_cast<char *>(chunk_->start());
            } else {
                position_ = aligned;
            }
            JS_ASSERT(uintptr_t(position_) + size <= uintptr_t(chunk_->end()));
        }

      public:
        Enum(LifoAlloc &alloc)
          : alloc_(&alloc),
            chunk_(alloc.first),
            position_(static_cast<char *>(alloc.first ? alloc.first->start() : NULL))
        {}

        // Return true if there are no more bytes to enumerate.
        bool empty() {
            return !chunk_ || (chunk_ == alloc_->latest && position_ >= chunk_->mark());
        }

        // Move the read position forward by the size of one T.
        template <typename T>
        void popFront() {
            popFront(sizeof(T));
        }

        // Move the read position forward by |size| bytes.
        void popFront(size_t size) {
            ensureSpaceAndAlignment(size);
            position_ = position_ + size;
        }

        // Update the bytes at the current position with a new value.
        template <typename T>
        void updateFront(const T &t) {
            ensureSpaceAndAlignment(sizeof(T));
            memmove(position_, &t, sizeof(T));
        }

        // Return a pointer to the item at the current position. This
        // returns a pointer to the inline storage, not a copy.
        template <typename T>
        T *get(size_t size = sizeof(T)) {
            ensureSpaceAndAlignment(size);
            return reinterpret_cast<T *>(position_);
        }

        // Return a Mark at the current position of the Enum.
        Mark mark() {
            alloc_->markCount++;
            return Mark(chunk_, position_);
        }
    };
};

class LifoAllocScope
{
    LifoAlloc       *lifoAlloc;
    LifoAlloc::Mark mark;
    bool            shouldRelease;
    MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER

  public:
    explicit LifoAllocScope(LifoAlloc *lifoAlloc
                            MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
      : lifoAlloc(lifoAlloc),
        mark(lifoAlloc->mark()),
        shouldRelease(true)
    {
        MOZ_GUARD_OBJECT_NOTIFIER_INIT;
    }

    ~LifoAllocScope() {
        if (shouldRelease)
            lifoAlloc->release(mark);
    }

    LifoAlloc &alloc() {
        return *lifoAlloc;
    }

    void releaseEarly() {
        JS_ASSERT(shouldRelease);
        lifoAlloc->release(mark);
        shouldRelease = false;
    }
};

} // namespace js

#endif /* ds_LifoAlloc_h */