DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// Implement TimeStamp::Now() with QueryPerformanceCounter() controlled with
// values of GetTickCount().

// XXX Forcing log to be able to catch issues in the field.  Should be removed
// before this reaches the Release or even Beta channel.
#define FORCE_PR_LOG

#include "mozilla/TimeStamp.h"
#include "mozilla/Mutex.h"
#include "mozilla/Services.h"
#include "nsIObserver.h"
#include "nsIObserverService.h"
#include "nsThreadUtils.h"
#include "nsAutoPtr.h"
#include <pratom.h>
#include <windows.h>

#include "prlog.h"
#include <stdio.h>

#include <intrin.h>

static bool
HasStableTSC()
{
  union {
    int regs[4];
    struct {
      int nIds;
      char cpuString[12];
    };
  } cpuInfo;

  __cpuid(cpuInfo.regs, 0);
  // Only allow Intel CPUs for now
  // The order of the registers is reg[1], reg[3], reg[2].  We just adjust the
  // string so that we can compare in one go.
  if (_strnicmp(cpuInfo.cpuString, "GenuntelineI", sizeof(cpuInfo.cpuString)))
    return false;

  int regs[4];

  // detect if the Advanced Power Management feature is supported
  __cpuid(regs, 0x80000000);
  if (regs[0] < 0x80000007)
    return false;

  __cpuid(regs, 0x80000007);
  // if bit 8 is set than TSC will run at a constant rate
  // in all ACPI P-state, C-states and T-states
  return regs[3] & (1 << 8);
}


#if defined(PR_LOGGING)
// Log module for mozilla::TimeStamp for Windows logging...
//
// To enable logging (see prlog.h for full details):
//
//    set NSPR_LOG_MODULES=TimeStampWindows:5
//    set NSPR_LOG_FILE=nspr.log
//
// this enables PR_LOG_DEBUG level information and places all output in
// the file nspr.log
  PRLogModuleInfo* timeStampLog = PR_NewLogModule("TimeStampWindows");
  #define LOG(x)  PR_LOG(timeStampLog, PR_LOG_DEBUG, x)
#else
  #define LOG(x)
#endif /* PR_LOGGING */

// Estimate of the smallest duration of time we can measure.
static volatile ULONGLONG sResolution;
static volatile ULONGLONG sResolutionSigDigs;
static const double   kNsPerSecd  = 1000000000.0;
static const LONGLONG kNsPerSec   = 1000000000;
static const LONGLONG kNsPerMillisec = 1000000;

static bool sHasStableTSC = false;


// ----------------------------------------------------------------------------
// Global constants
// ----------------------------------------------------------------------------

// After this time we always recalibrate the skew.
//
// On most platforms QPC and GTC have not quit the same slope, so after some
// time the two values will disperse.  The 4s calibration interval has been
// chosen mostly arbitrarily based on tests.
//
// Mostly, 4 seconds has been chosen based on the sleep/wake issue - timers
// shift after wakeup.  I wanted to make the time as reasonably short as
// possible to always recalibrate after even a very short standby time (quit
// reasonable test case).  So, there is a lot of space to prolong it
// to say 20 seconds or even more, needs testing in the field, though.
//
// Value is number of [ms].
static const ULONGLONG kCalibrationInterval = 4000;

// On every read of QPC we check the overflow of skew difference doesn't go
// over this number of milliseconds.  Both timer functions jitter so we have
// to have some limit.  The value is based on tests.
//
// Changing kCalibrationInterval influences this limit: prolonging
// just kCalibrationInterval means to be more sensitive to threshold overflows.
//
// How this constant is used (also see CheckCalibration function):
// First, adjust the limit linearly to the calibration interval:
//   LIMIT = (GTC_now - GTC_calib) / kCalibrationInterval
// Then, check the skew difference overflow is in this adjusted limit:
//   ABS((QPC_now - GTC_now) - (QPC_calib - GTC_calib)) - THRESHOLD < LIMIT
//
// Thresholds are calculated dynamically, see sUnderrunThreshold and
// sOverrunThreshold below.
//
// Value is number of [ms].
static const ULONGLONG kOverflowLimit = 100;

// If we are not able to get the value of GTC time increment, use this value
// which is the most usual increment.
static const DWORD kDefaultTimeIncrement = 156001;

// ----------------------------------------------------------------------------
// Global variables, not changing at runtime
// ----------------------------------------------------------------------------

/**
 * The [mt] unit:
 *
 * Many values are kept in ticks of the Performance Coutner x 1000,
 * further just referred as [mt], meaning milli-ticks.
 *
 * This is needed to preserve maximum precision of the performance frequency
 * representation.  GetTickCount values in milliseconds are multiplied with
 * frequency per second.  Therefor we need to multiply QPC value by 1000 to
 * have the same units to allow simple arithmentic with both QPC and GTC.
 */

#define ms2mt(x) ((x) * sFrequencyPerSec)
#define mt2ms(x) ((x) / sFrequencyPerSec)
#define mt2ms_d(x) (double(x) / sFrequencyPerSec)

// Result of QueryPerformanceFrequency
static LONGLONG sFrequencyPerSec = 0;

// Lower and upper bound that QueryPerformanceCounter - GetTickCount must not
// go under or over when compared to the calibrated QPC - GTC difference (skew)
// Values are based on the GetTickCount update interval.
//
// Schematically, QPC works correctly if ((QPC_now - GTC_now) -
// (QPC_calib - GTC_calib)) is in  [sUnderrunThreshold, sOverrunThreshold]
// interval every time we access them.
//
// Kept in [mt]
static LONGLONG sUnderrunThreshold;
static LONGLONG sOverrunThreshold;

// ----------------------------------------------------------------------------
// Global lock
// ----------------------------------------------------------------------------

// Thread spin count before entering the full wait state for sTimeStampLock.
// Inspired by Rob Arnold's work on PRMJ_Now().
static const DWORD kLockSpinCount = 4096;

// Common mutex (thanks the relative complexity of the logic, this is better
// then using CMPXCHG8B.)
// It is protecting the globals bellow.
CRITICAL_SECTION sTimeStampLock;

// ----------------------------------------------------------------------------
// Globals heavily changing at runtime, protected with sTimeStampLock mutex
// ----------------------------------------------------------------------------

// The calibrated difference between QPC and GTC.
//
// Kept in [mt]
static LONGLONG sSkew = 0;

// Keeps the last result we have returned from sGetTickCount64 (bellow).  Protects
// from roll over and going backward.
//
// Kept in [ms]
static ULONGLONG sLastGTCResult = 0;

// Holder of the last result of our main hi-res function.  Protects from going
// backward.
//
// Kept in [mt]
static ULONGLONG sLastResult = 0;

// Time of the last performed calibration.
//
// Kept in [ms]
static ULONGLONG sLastCalibrated;

// The following variable stores two booleans, both initialized to false.
//
// The lower word is fallbackToGTC:
// After we have detected a run out of bounderies set this to true.  This
// then disallows use of QPC result for the hi-res timer.
//
// The higher word is forceRecalibrate:
// Set to true to force recalibration on QPC read.  This is generally set after
// system wake up, during which skew can change a lot.
static union CalibrationFlags {
  struct {
    bool fallBackToGTC;
    bool forceRecalibrate;
  } flags;
  uint32_t dwordValue;
} sCalibrationFlags;


namespace mozilla {


static ULONGLONG
CalibratedPerformanceCounter();

typedef ULONGLONG (WINAPI* GetTickCount64_t)();
static GetTickCount64_t sGetTickCount64 = nullptr;

static inline ULONGLONG
InterlockedRead64(volatile ULONGLONG* destination)
{
#ifdef _WIN64
  // Aligned 64-bit reads on x86-64 are atomic
  return *destination;
#else
  // Dirty hack since Windows doesn't provide an atomic 64-bit read function
  return _InterlockedCompareExchange64(reinterpret_cast<volatile __int64*> (destination), 0, 0);
#endif
}

// ----------------------------------------------------------------------------
// Critical Section helper class
// ----------------------------------------------------------------------------

class AutoCriticalSection
{
public:
  AutoCriticalSection(LPCRITICAL_SECTION section)
    : mSection(section)
  {
    ::EnterCriticalSection(mSection);
  }
  ~AutoCriticalSection()
  {
    ::LeaveCriticalSection(mSection);
  }
private:
  LPCRITICAL_SECTION mSection;
};


// ----------------------------------------------------------------------------
// System standby and wakeup status observer.  Needed to ignore skew jump after
// the system has been woken up, happens mostly on XP.
// ----------------------------------------------------------------------------

class StandbyObserver : public nsIObserver
{
  NS_DECL_ISUPPORTS
  NS_DECL_NSIOBSERVER

public:
  StandbyObserver()
  {
    LOG(("TimeStamp: StandByObserver::StandByObserver()"));
  }

  ~StandbyObserver()
  {
    LOG(("TimeStamp: StandByObserver::~StandByObserver()"));
  }

  static inline void Ensure()
  {
    if (sInitialized)
      return;

    // Not available to init on other then the main thread since using
    // the ObserverService.
    if (!NS_IsMainThread())
      return;

    nsCOMPtr<nsIObserverService> obs = services::GetObserverService();
    if (!obs)
      return; // Too soon...

    sInitialized = true;

    nsRefPtr<StandbyObserver> observer = new StandbyObserver();
    obs->AddObserver(observer, "wake_notification", false);

    // There is no need to remove the observer, observer service is the only
    // referer and we don't hold reference back to the observer service.
  }

private:
  static bool sInitialized;
};

NS_IMPL_THREADSAFE_ISUPPORTS1(StandbyObserver, nsIObserver)

bool
StandbyObserver::sInitialized = false;

NS_IMETHODIMP
StandbyObserver::Observe(nsISupports *subject,
                         const char *topic,
                         const PRUnichar *data)
{
  AutoCriticalSection lock(&sTimeStampLock);

  // Clear the potentiall fallback flag now and try using
  // QPC again after wake up.
  CalibrationFlags value;
  value.flags.fallBackToGTC = false;
  value.flags.forceRecalibrate = true;
  sCalibrationFlags.dwordValue = value.dwordValue; // aligned 32-bit writes are atomic

  LOG(("TimeStamp: system has woken up, reset GTC fallback"));

  return NS_OK;
}


// ----------------------------------------------------------------------------
// The timer core implementation
// ----------------------------------------------------------------------------

static void
InitThresholds()
{
  DWORD timeAdjustment = 0, timeIncrement = 0;
  BOOL timeAdjustmentDisabled;
  GetSystemTimeAdjustment(&timeAdjustment,
                          &timeIncrement,
                          &timeAdjustmentDisabled);

  if (!timeIncrement)
    timeIncrement = kDefaultTimeIncrement;

  // Ceiling to a millisecond
  // Example values: 156001, 210000
  DWORD timeIncrementCeil = timeIncrement;
  // Don't want to round up if already rounded, values will be: 156000, 209999
  timeIncrementCeil -= 1;
  // Convert to ms, values will be: 15, 20
  timeIncrementCeil /= 10000;
  // Round up, values will be: 16, 21
  timeIncrementCeil += 1;
  // Convert back to 100ns, values will be: 160000, 210000
  timeIncrementCeil *= 10000;

  // How many milli-ticks has the interval
  LONGLONG ticksPerGetTickCountResolution =
    (int64_t(timeIncrement) * sFrequencyPerSec) / 10000LL;

  // How many milli-ticks has the interval rounded up
  LONGLONG ticksPerGetTickCountResolutionCeiling =
    (int64_t(timeIncrementCeil) * sFrequencyPerSec) / 10000LL;


  // I observed differences about 2 times of the GTC resolution.  GTC may
  // jump by 32 ms in two steps, therefor use the ceiling value.
  sUnderrunThreshold =
    LONGLONG((-2) * ticksPerGetTickCountResolutionCeiling);

  // QPC should go no further then 2 * GTC resolution
  sOverrunThreshold =
    LONGLONG((+2) * ticksPerGetTickCountResolution);
}

static void
InitResolution()
{
  // 10 total trials is arbitrary: what we're trying to avoid by
  // looping is getting unlucky and being interrupted by a context
  // switch or signal, or being bitten by paging/cache effects

  ULONGLONG minres = ~0ULL;
  int loops = 10;
  do {
    ULONGLONG start = CalibratedPerformanceCounter();
    ULONGLONG end = CalibratedPerformanceCounter();

    ULONGLONG candidate = (end - start);
    if (candidate < minres)
      minres = candidate;
  } while (--loops && minres);

  if (0 == minres) {
    minres = 1;
  }

  // Converting minres that is in [mt] to nanosecods, multiplicating
  // the argument to preserve resolution.
  ULONGLONG result = mt2ms(minres * kNsPerMillisec);
  if (0 == result) {
    result = 1;
  }

  sResolution = result;

  // find the number of significant digits in mResolution, for the
  // sake of ToSecondsSigDigits()
  ULONGLONG sigDigs;
  for (sigDigs = 1;
       !(sigDigs == result
         || 10*sigDigs > result);
       sigDigs *= 10);

  sResolutionSigDigs = sigDigs;
}

// Function protecting GetTickCount result from rolling over, result is in [ms]
// @param gtc
// Result of GetTickCount().  Passing it as an arg lets us call it out
// of the common mutex.
static ULONGLONG WINAPI
GetTickCount64Fallback()
{
  ULONGLONG old, newValue;
  do {
    old = InterlockedRead64(&sLastGTCResult);
    ULONGLONG oldTop = old & 0xffffffff00000000;
    ULONG oldBottom = old & 0xffffffff;
    ULONG newBottom = GetTickCount();
    if (newBottom < oldBottom) {
        // handle overflow
        newValue = (oldTop + (1ULL<<32)) | newBottom;
    } else {
        newValue = oldTop | newBottom;
    }
  } while (old != _InterlockedCompareExchange64(reinterpret_cast<volatile __int64*> (&sLastGTCResult),
                                                newValue, old));

  return newValue;
}

// Result is in [mt]
static inline ULONGLONG
PerformanceCounter()
{
  LARGE_INTEGER pc;
  ::QueryPerformanceCounter(&pc);
  return pc.QuadPart * 1000ULL;
}

// Called when we detect a larger deviation of QPC to disable it.
static inline void
RecordFlaw()
{
  sCalibrationFlags.flags.fallBackToGTC = true;

  LOG(("TimeStamp: falling back to GTC :("));

#if 0
  // This code has been disabled, because we:
  // 0. InitResolution must not be called under the lock (would reenter) while
  //    we shouldn't release it here just to allow it
  // 1. may return back to using QPC after system wake up
  // 2. InitResolution for GTC will probably return 0 anyway (increments
  //    only every 15 or 16 ms.)
  //
  // There is no need to drop sFrequencyPerSec to 1, result of sGetTickCount64
  // is multiplied and later divided with sFrequencyPerSec.  Changing it
  // here may introduce sync problems.  Syncing access to sFrequencyPerSec
  // is overkill.  Drawback is we loose some bits from the upper bound of
  // the 64 bits timer value, usualy up to 7, it means the app cannot run
  // more then some 4'000'000 years :)
  InitResolution();
#endif
}

// Check the current skew is in bounderies and occasionally recalculate it.
// Return true if QPC is OK to use, return false to use GTC only.
//
// Arguments:
// overflow - the calculated overflow out of the bounderies for skew difference
// qpc - current value of QueryPerformanceCounter
// gtc - current value of GetTickCount, more actual according possible system
//       sleep between read of QPC and GTC
static inline bool
CheckCalibration(LONGLONG overflow, ULONGLONG qpc, ULONGLONG gtc)
{
  CalibrationFlags value;
  value.dwordValue = sCalibrationFlags.dwordValue; // aligned 32-bit reads are atomic
  if (value.flags.fallBackToGTC) {
    // We are forbidden to use QPC
    return false;
  }

  ULONGLONG sinceLastCalibration = gtc - sLastCalibrated;

  if (overflow && !value.flags.forceRecalibrate) {
    // Calculate trend of the overflow to correspond to the calibration
    // interval, we may get here long after the last calibration because we
    // either didn't read the hi-res function or the system was suspended.
    ULONGLONG trend = LONGLONG(overflow *
      (double(kCalibrationInterval) / sinceLastCalibration));

    LOG(("TimeStamp: calibration after %llus with overflow %1.4fms"
         ", adjusted trend per calibration interval is %1.4fms",
         sinceLastCalibration / 1000,
         mt2ms_d(overflow),
         mt2ms_d(trend)));

    if (trend > ms2mt(kOverflowLimit)) {
      // This sets fallBackToGTC, we have detected
      // an unreliability of QPC, stop using it.
      AutoCriticalSection lock(&sTimeStampLock);
      RecordFlaw();
      return false;
    }
  }

  if (sinceLastCalibration > kCalibrationInterval || value.flags.forceRecalibrate) {
    // Recalculate the skew now
    AutoCriticalSection lock(&sTimeStampLock);
    sSkew = qpc - ms2mt(gtc);
    sLastCalibrated = gtc;
    LOG(("TimeStamp: new skew is %1.2fms (force:%d)",
      mt2ms_d(sSkew), value.flags.forceRecalibrate));

    sCalibrationFlags.flags.forceRecalibrate = false;
  }

  return true;
}

// AtomicStoreIfGreaterThan tries to store the maximum of two values in one of them
// without locking.  The only scenario in which two racing threads may corrupt the
// maximum value is when they both try to increase the value without knowing about
// each other, like below:
//
// Thread 1 reads 1000.  newValue in thread 1 is 1005.
// Thread 2 reads 1000.  newValue in thread 2 is 1001.
// Thread 1 tries to store.  Its value is less than newValue, so the store happens.
//                           *destination is now 1005.
// Thread 2 tries to store.  Its value is less than newValue, so the store happens.
//                           *destination is now 1001.
//
// The correct value to be stored if this was happening serially is 1005.  The
// following algorithm achieves that.
//
// The return value is the maximum value.
ULONGLONG
AtomicStoreIfGreaterThan(ULONGLONG* destination, ULONGLONG newValue)
{
  ULONGLONG readValue;
  do {
    readValue = InterlockedRead64(destination);
    if (readValue > newValue)
      return readValue;
  } while (readValue != _InterlockedCompareExchange64(reinterpret_cast<volatile __int64*> (destination),
                                                      newValue, readValue));

  return newValue;
}

// The main function.  Result is in [mt] ensuring to not go back and be mostly
// reliable with highest possible resolution.
static ULONGLONG
CalibratedPerformanceCounter()
{
  // XXX This is using ObserverService, cannot instantiate in the static
  // startup, really needs a better initation code here.
  StandbyObserver::Ensure();

  // Don't hold the lock over call to QueryPerformanceCounter, since it is
  // the largest bottleneck, let threads read the value concurently to have
  // possibly a better performance.

  ULONGLONG qpc = PerformanceCounter();

  // Rollover protection
  ULONGLONG gtc = sGetTickCount64();

  LONGLONG diff = qpc - ms2mt(gtc) - sSkew;
  LONGLONG overflow = 0;

  if (diff < sUnderrunThreshold) {
    overflow = sUnderrunThreshold - diff;
  }
  else if (diff > sOverrunThreshold) {
    overflow = diff - sOverrunThreshold;
  }

  ULONGLONG result = qpc;
  if (!CheckCalibration(overflow, qpc, gtc)) {
    // We are back on GTC, QPC has been observed unreliable
    result = ms2mt(gtc) + sSkew;
  }

#if 0
  LOG(("TimeStamp: result = %1.2fms, diff = %1.4fms",
      mt2ms_d(result), mt2ms_d(diff)));
#endif

  return AtomicStoreIfGreaterThan(&sLastResult, result);
}

// ----------------------------------------------------------------------------
// TimeDuration and TimeStamp implementation
// ----------------------------------------------------------------------------

double
TimeDuration::ToSeconds() const
{
  // Converting before arithmetic avoids blocked store forward
  return double(mValue) / (double(sFrequencyPerSec) * 1000.0);
}

double
TimeDuration::ToSecondsSigDigits() const
{
  AutoCriticalSection lock(&sTimeStampLock);

  // don't report a value < mResolution ...
  LONGLONG resolution = sResolution;
  LONGLONG resolutionSigDigs = sResolutionSigDigs;
  LONGLONG valueSigDigs = resolution * (mValue / resolution);
  // and chop off insignificant digits
  valueSigDigs = resolutionSigDigs * (valueSigDigs / resolutionSigDigs);
  return double(valueSigDigs) / kNsPerSecd;
}

TimeDuration
TimeDuration::FromMilliseconds(double aMilliseconds)
{
  return TimeDuration::FromTicks(int64_t(ms2mt(aMilliseconds)));
}

TimeDuration
TimeDuration::Resolution()
{
  AutoCriticalSection lock(&sTimeStampLock);

  return TimeDuration::FromTicks(int64_t(sResolution));
}

struct TimeStampInitialization
{
  TimeStampInitialization() {
    TimeStamp::Startup();
  }
  ~TimeStampInitialization() {
    TimeStamp::Shutdown();
  }
};

static TimeStampInitialization initOnce;

nsresult
TimeStamp::Startup()
{
  // Decide which implementation to use for the high-performance timer.

  HMODULE kernelDLL = GetModuleHandleW(L"kernel32.dll");
  sGetTickCount64 = reinterpret_cast<GetTickCount64_t>
    (GetProcAddress(kernelDLL, "GetTickCount64"));
  if (!sGetTickCount64) {
    // If the platform does not support the GetTickCount64 (Windows XP doesn't),
    // then use our fallback implementation based on GetTickCount.
    sGetTickCount64 = GetTickCount64Fallback;
  }

  InitializeCriticalSectionAndSpinCount(&sTimeStampLock, kLockSpinCount);

  LARGE_INTEGER freq;
  BOOL QPCAvailable = ::QueryPerformanceFrequency(&freq);
  if (!QPCAvailable) {
    // No Performance Counter.  Fall back to use GetTickCount.
    sFrequencyPerSec = 1;
    sCalibrationFlags.flags.fallBackToGTC = true;
    InitResolution();

    LOG(("TimeStamp: using GetTickCount"));
    return NS_OK;
  }

  sFrequencyPerSec = freq.QuadPart;

  ULONGLONG qpc = PerformanceCounter();
  sLastCalibrated = sGetTickCount64();
  sSkew = qpc - ms2mt(sLastCalibrated);

  InitThresholds();
  InitResolution();

  sHasStableTSC = HasStableTSC();

  LOG(("TimeStamp: initial skew is %1.2fms", mt2ms_d(sSkew)));

  return NS_OK;
}

void
TimeStamp::Shutdown()
{
  DeleteCriticalSection(&sTimeStampLock);
}

TimeStamp
TimeStamp::Now()
{
  if (sHasStableTSC) {
    return TimeStamp(uint64_t(PerformanceCounter()));
  }
  return TimeStamp(uint64_t(CalibratedPerformanceCounter()));
}

} // namespace mozilla