DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include <string.h>
#include "mozilla/SHA1.h"
#include "mozilla/Assertions.h"

// FIXME: We should probably create a more complete mfbt/Endian.h. This assumes
// that any compiler that doesn't define these macros is little endian.
#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__)
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define MOZ_IS_LITTLE_ENDIAN
#endif
#else
#define MOZ_IS_LITTLE_ENDIAN
#endif

using namespace mozilla;

static inline uint32_t SHA_ROTL(uint32_t t, uint32_t n)
{
    return ((t << n) | (t >> (32 - n)));
}

#ifdef MOZ_IS_LITTLE_ENDIAN
static inline unsigned SHA_HTONL(unsigned x) {
  const unsigned int mask = 0x00FF00FF;
  x = (x << 16) | (x >> 16);
  return ((x & mask) << 8) | ((x >> 8) & mask);
}
#else
static inline unsigned SHA_HTONL(unsigned x) {
  return x;
}
#endif

static void shaCompress(volatile unsigned *X, const uint32_t * datain);

#define SHA_F1(X,Y,Z) ((((Y)^(Z))&(X))^(Z))
#define SHA_F2(X,Y,Z) ((X)^(Y)^(Z))
#define SHA_F3(X,Y,Z) (((X)&(Y))|((Z)&((X)|(Y))))
#define SHA_F4(X,Y,Z) ((X)^(Y)^(Z))

#define SHA_MIX(n,a,b,c)    XW(n) = SHA_ROTL(XW(a)^XW(b)^XW(c)^XW(n), 1)

SHA1Sum::SHA1Sum() : size(0), mDone(false)
{
  // Initialize H with constants from FIPS180-1.
  H[0] = 0x67452301L;
  H[1] = 0xefcdab89L;
  H[2] = 0x98badcfeL;
  H[3] = 0x10325476L;
  H[4] = 0xc3d2e1f0L;
}

/* Explanation of H array and index values:
 * The context's H array is actually the concatenation of two arrays
 * defined by SHA1, the H array of state variables (5 elements),
 * and the W array of intermediate values, of which there are 16 elements.
 * The W array starts at H[5], that is W[0] is H[5].
 * Although these values are defined as 32-bit values, we use 64-bit
 * variables to hold them because the AMD64 stores 64 bit values in
 * memory MUCH faster than it stores any smaller values.
 *
 * Rather than passing the context structure to shaCompress, we pass
 * this combined array of H and W values.  We do not pass the address
 * of the first element of this array, but rather pass the address of an
 * element in the middle of the array, element X.  Presently X[0] is H[11].
 * So we pass the address of H[11] as the address of array X to shaCompress.
 * Then shaCompress accesses the members of the array using positive AND
 * negative indexes.
 *
 * Pictorially: (each element is 8 bytes)
 * H | H0 H1 H2 H3 H4 W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 Wa Wb Wc Wd We Wf |
 * X |-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 |
 *
 * The byte offset from X[0] to any member of H and W is always
 * representable in a signed 8-bit value, which will be encoded
 * as a single byte offset in the X86-64 instruction set.
 * If we didn't pass the address of H[11], and instead passed the
 * address of H[0], the offsets to elements H[16] and above would be
 * greater than 127, not representable in a signed 8-bit value, and the
 * x86-64 instruction set would encode every such offset as a 32-bit
 * signed number in each instruction that accessed element H[16] or
 * higher.  This results in much bigger and slower code.
 */
#define H2X 11 /* X[0] is H[11], and H[0] is X[-11] */
#define W2X  6 /* X[0] is W[6],  and W[0] is X[-6]  */

/*
 *  SHA: Add data to context.
 */
void SHA1Sum::update(const void *dataIn, uint32_t len)
{
  MOZ_ASSERT(!mDone);

  const uint8_t* data = static_cast<const uint8_t*>(dataIn);

  register unsigned int lenB;
  register unsigned int togo;

  if (!len)
    return;

  /* accumulate the byte count. */
  lenB = (unsigned int)(size) & 63U;

  size += len;

  /*
   *  Read the data into W and process blocks as they get full
   */
  if (lenB > 0) {
    togo = 64U - lenB;
    if (len < togo)
      togo = len;
    memcpy(u.b + lenB, data, togo);
    len    -= togo;
    data += togo;
    lenB    = (lenB + togo) & 63U;
    if (!lenB) {
      shaCompress(&H[H2X], u.w);
    }
  }
  while (len >= 64U) {
    len    -= 64U;
    shaCompress(&H[H2X], (uint32_t *)data);
    data += 64U;
  }
  if (len) {
    memcpy(u.b, data, len);
  }
}


/*
 *  SHA: Generate hash value
 */
void SHA1Sum::finish(uint8_t hashout[20])
{
  MOZ_ASSERT(!mDone);
  register uint64_t size2 = size;
  register uint32_t lenB = (uint32_t)size2 & 63;

  static const uint8_t bulk_pad[64] = { 0x80,0,0,0,0,0,0,0,0,0,
          0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
          0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0  };

  /*
   *  Pad with a binary 1 (e.g. 0x80), then zeroes, then length in bits
   */

  update(bulk_pad, (((55+64) - lenB) & 63) + 1);
  MOZ_ASSERT(((uint32_t)size & 63) == 56);
  /* Convert size from bytes to bits. */
  size2 <<= 3;
  u.w[14] = SHA_HTONL((uint32_t)(size2 >> 32));
  u.w[15] = SHA_HTONL((uint32_t)size2);
  shaCompress(&H[H2X], u.w);

  /*
   *  Output hash
   */
  u.w[0] = SHA_HTONL(H[0]);
  u.w[1] = SHA_HTONL(H[1]);
  u.w[2] = SHA_HTONL(H[2]);
  u.w[3] = SHA_HTONL(H[3]);
  u.w[4] = SHA_HTONL(H[4]);
  memcpy(hashout, u.w, 20);
  mDone = true;
}

/*
 *  SHA: Compression function, unrolled.
 *
 * Some operations in shaCompress are done as 5 groups of 16 operations.
 * Others are done as 4 groups of 20 operations.
 * The code below shows that structure.
 *
 * The functions that compute the new values of the 5 state variables
 * A-E are done in 4 groups of 20 operations (or you may also think
 * of them as being done in 16 groups of 5 operations).  They are
 * done by the SHA_RNDx macros below, in the right column.
 *
 * The functions that set the 16 values of the W array are done in
 * 5 groups of 16 operations.  The first group is done by the
 * LOAD macros below, the latter 4 groups are done by SHA_MIX below,
 * in the left column.
 *
 * gcc's optimizer observes that each member of the W array is assigned
 * a value 5 times in this code.  It reduces the number of store
 * operations done to the W array in the context (that is, in the X array)
 * by creating a W array on the stack, and storing the W values there for
 * the first 4 groups of operations on W, and storing the values in the
 * context's W array only in the fifth group.  This is undesirable.
 * It is MUCH bigger code than simply using the context's W array, because
 * all the offsets to the W array in the stack are 32-bit signed offsets,
 * and it is no faster than storing the values in the context's W array.
 *
 * The original code for sha_fast.c prevented this creation of a separate
 * W array in the stack by creating a W array of 80 members, each of
 * whose elements is assigned only once. It also separated the computations
 * of the W array values and the computations of the values for the 5
 * state variables into two separate passes, W's, then A-E's so that the 
 * second pass could be done all in registers (except for accessing the W
 * array) on machines with fewer registers.  The method is suboptimal
 * for machines with enough registers to do it all in one pass, and it
 * necessitates using many instructions with 32-bit offsets.
 *
 * This code eliminates the separate W array on the stack by a completely
 * different means: by declaring the X array volatile.  This prevents
 * the optimizer from trying to reduce the use of the X array by the
 * creation of a MORE expensive W array on the stack. The result is
 * that all instructions use signed 8-bit offsets and not 32-bit offsets.
 *
 * The combination of this code and the -O3 optimizer flag on GCC 3.4.3
 * results in code that is 3 times faster than the previous NSS sha_fast
 * code on AMD64.
 */
static void
shaCompress(volatile unsigned *X, const uint32_t *inbuf)
{
  register unsigned A, B, C, D, E;


#define XH(n) X[n-H2X]
#define XW(n) X[n-W2X]

#define K0 0x5a827999L
#define K1 0x6ed9eba1L
#define K2 0x8f1bbcdcL
#define K3 0xca62c1d6L

#define SHA_RND1(a,b,c,d,e,n) \
  a = SHA_ROTL(b,5)+SHA_F1(c,d,e)+a+XW(n)+K0; c=SHA_ROTL(c,30) 
#define SHA_RND2(a,b,c,d,e,n) \
  a = SHA_ROTL(b,5)+SHA_F2(c,d,e)+a+XW(n)+K1; c=SHA_ROTL(c,30) 
#define SHA_RND3(a,b,c,d,e,n) \
  a = SHA_ROTL(b,5)+SHA_F3(c,d,e)+a+XW(n)+K2; c=SHA_ROTL(c,30) 
#define SHA_RND4(a,b,c,d,e,n) \
  a = SHA_ROTL(b,5)+SHA_F4(c,d,e)+a+XW(n)+K3; c=SHA_ROTL(c,30) 

#define LOAD(n) XW(n) = SHA_HTONL(inbuf[n])

  A = XH(0);
  B = XH(1);
  C = XH(2);
  D = XH(3);
  E = XH(4);

  LOAD(0);		   SHA_RND1(E,A,B,C,D, 0);
  LOAD(1);		   SHA_RND1(D,E,A,B,C, 1);
  LOAD(2);		   SHA_RND1(C,D,E,A,B, 2);
  LOAD(3);		   SHA_RND1(B,C,D,E,A, 3);
  LOAD(4);		   SHA_RND1(A,B,C,D,E, 4);
  LOAD(5);		   SHA_RND1(E,A,B,C,D, 5);
  LOAD(6);		   SHA_RND1(D,E,A,B,C, 6);
  LOAD(7);		   SHA_RND1(C,D,E,A,B, 7);
  LOAD(8);		   SHA_RND1(B,C,D,E,A, 8);
  LOAD(9);		   SHA_RND1(A,B,C,D,E, 9);
  LOAD(10);		   SHA_RND1(E,A,B,C,D,10);
  LOAD(11);		   SHA_RND1(D,E,A,B,C,11);
  LOAD(12);		   SHA_RND1(C,D,E,A,B,12);
  LOAD(13);		   SHA_RND1(B,C,D,E,A,13);
  LOAD(14);		   SHA_RND1(A,B,C,D,E,14);
  LOAD(15);		   SHA_RND1(E,A,B,C,D,15);

  SHA_MIX( 0, 13,  8,  2); SHA_RND1(D,E,A,B,C, 0);
  SHA_MIX( 1, 14,  9,  3); SHA_RND1(C,D,E,A,B, 1);
  SHA_MIX( 2, 15, 10,  4); SHA_RND1(B,C,D,E,A, 2);
  SHA_MIX( 3,  0, 11,  5); SHA_RND1(A,B,C,D,E, 3);

  SHA_MIX( 4,  1, 12,  6); SHA_RND2(E,A,B,C,D, 4);
  SHA_MIX( 5,  2, 13,  7); SHA_RND2(D,E,A,B,C, 5);
  SHA_MIX( 6,  3, 14,  8); SHA_RND2(C,D,E,A,B, 6);
  SHA_MIX( 7,  4, 15,  9); SHA_RND2(B,C,D,E,A, 7);
  SHA_MIX( 8,  5,  0, 10); SHA_RND2(A,B,C,D,E, 8);
  SHA_MIX( 9,  6,  1, 11); SHA_RND2(E,A,B,C,D, 9);
  SHA_MIX(10,  7,  2, 12); SHA_RND2(D,E,A,B,C,10);
  SHA_MIX(11,  8,  3, 13); SHA_RND2(C,D,E,A,B,11);
  SHA_MIX(12,  9,  4, 14); SHA_RND2(B,C,D,E,A,12);
  SHA_MIX(13, 10,  5, 15); SHA_RND2(A,B,C,D,E,13);
  SHA_MIX(14, 11,  6,  0); SHA_RND2(E,A,B,C,D,14);
  SHA_MIX(15, 12,  7,  1); SHA_RND2(D,E,A,B,C,15);

  SHA_MIX( 0, 13,  8,  2); SHA_RND2(C,D,E,A,B, 0);
  SHA_MIX( 1, 14,  9,  3); SHA_RND2(B,C,D,E,A, 1);
  SHA_MIX( 2, 15, 10,  4); SHA_RND2(A,B,C,D,E, 2);
  SHA_MIX( 3,  0, 11,  5); SHA_RND2(E,A,B,C,D, 3);
  SHA_MIX( 4,  1, 12,  6); SHA_RND2(D,E,A,B,C, 4);
  SHA_MIX( 5,  2, 13,  7); SHA_RND2(C,D,E,A,B, 5);
  SHA_MIX( 6,  3, 14,  8); SHA_RND2(B,C,D,E,A, 6);
  SHA_MIX( 7,  4, 15,  9); SHA_RND2(A,B,C,D,E, 7);

  SHA_MIX( 8,  5,  0, 10); SHA_RND3(E,A,B,C,D, 8);
  SHA_MIX( 9,  6,  1, 11); SHA_RND3(D,E,A,B,C, 9);
  SHA_MIX(10,  7,  2, 12); SHA_RND3(C,D,E,A,B,10);
  SHA_MIX(11,  8,  3, 13); SHA_RND3(B,C,D,E,A,11);
  SHA_MIX(12,  9,  4, 14); SHA_RND3(A,B,C,D,E,12);
  SHA_MIX(13, 10,  5, 15); SHA_RND3(E,A,B,C,D,13);
  SHA_MIX(14, 11,  6,  0); SHA_RND3(D,E,A,B,C,14);
  SHA_MIX(15, 12,  7,  1); SHA_RND3(C,D,E,A,B,15);

  SHA_MIX( 0, 13,  8,  2); SHA_RND3(B,C,D,E,A, 0);
  SHA_MIX( 1, 14,  9,  3); SHA_RND3(A,B,C,D,E, 1);
  SHA_MIX( 2, 15, 10,  4); SHA_RND3(E,A,B,C,D, 2);
  SHA_MIX( 3,  0, 11,  5); SHA_RND3(D,E,A,B,C, 3);
  SHA_MIX( 4,  1, 12,  6); SHA_RND3(C,D,E,A,B, 4);
  SHA_MIX( 5,  2, 13,  7); SHA_RND3(B,C,D,E,A, 5);
  SHA_MIX( 6,  3, 14,  8); SHA_RND3(A,B,C,D,E, 6);
  SHA_MIX( 7,  4, 15,  9); SHA_RND3(E,A,B,C,D, 7);
  SHA_MIX( 8,  5,  0, 10); SHA_RND3(D,E,A,B,C, 8);
  SHA_MIX( 9,  6,  1, 11); SHA_RND3(C,D,E,A,B, 9);
  SHA_MIX(10,  7,  2, 12); SHA_RND3(B,C,D,E,A,10);
  SHA_MIX(11,  8,  3, 13); SHA_RND3(A,B,C,D,E,11);

  SHA_MIX(12,  9,  4, 14); SHA_RND4(E,A,B,C,D,12);
  SHA_MIX(13, 10,  5, 15); SHA_RND4(D,E,A,B,C,13);
  SHA_MIX(14, 11,  6,  0); SHA_RND4(C,D,E,A,B,14);
  SHA_MIX(15, 12,  7,  1); SHA_RND4(B,C,D,E,A,15);

  SHA_MIX( 0, 13,  8,  2); SHA_RND4(A,B,C,D,E, 0);
  SHA_MIX( 1, 14,  9,  3); SHA_RND4(E,A,B,C,D, 1);
  SHA_MIX( 2, 15, 10,  4); SHA_RND4(D,E,A,B,C, 2);
  SHA_MIX( 3,  0, 11,  5); SHA_RND4(C,D,E,A,B, 3);
  SHA_MIX( 4,  1, 12,  6); SHA_RND4(B,C,D,E,A, 4);
  SHA_MIX( 5,  2, 13,  7); SHA_RND4(A,B,C,D,E, 5);
  SHA_MIX( 6,  3, 14,  8); SHA_RND4(E,A,B,C,D, 6);
  SHA_MIX( 7,  4, 15,  9); SHA_RND4(D,E,A,B,C, 7);
  SHA_MIX( 8,  5,  0, 10); SHA_RND4(C,D,E,A,B, 8);
  SHA_MIX( 9,  6,  1, 11); SHA_RND4(B,C,D,E,A, 9);
  SHA_MIX(10,  7,  2, 12); SHA_RND4(A,B,C,D,E,10);
  SHA_MIX(11,  8,  3, 13); SHA_RND4(E,A,B,C,D,11);
  SHA_MIX(12,  9,  4, 14); SHA_RND4(D,E,A,B,C,12);
  SHA_MIX(13, 10,  5, 15); SHA_RND4(C,D,E,A,B,13);
  SHA_MIX(14, 11,  6,  0); SHA_RND4(B,C,D,E,A,14);
  SHA_MIX(15, 12,  7,  1); SHA_RND4(A,B,C,D,E,15);

  XH(0) += A;
  XH(1) += B;
  XH(2) += C;
  XH(3) += D;
  XH(4) += E;
}