DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (5b81998bb7ab)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#undef NDEBUG
#include <assert.h>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include "elfxx.h"

#define ver "0"
#define elfhack_data ".elfhack.data.v" ver
#define elfhack_text ".elfhack.text.v" ver

#ifndef R_ARM_V4BX
#define R_ARM_V4BX 0x28
#endif
#ifndef R_ARM_THM_JUMP24
#define R_ARM_THM_JUMP24 0x1e
#endif

char *rundir = NULL;

template <typename T>
struct wrapped {
    T value;
};

class Elf_Addr_Traits {
public:
    typedef wrapped<Elf32_Addr> Type32;
    typedef wrapped<Elf64_Addr> Type64;

    template <class endian, typename R, typename T>
    static inline void swap(T &t, R &r) {
        r.value = endian::swap(t.value);
    }
};

typedef serializable<Elf_Addr_Traits> Elf_Addr;

class Elf_RelHack_Traits {
public:
    typedef Elf32_Rel Type32;
    typedef Elf32_Rel Type64;

    template <class endian, typename R, typename T>
    static inline void swap(T &t, R &r) {
        r.r_offset = endian::swap(t.r_offset);
        r.r_info = endian::swap(t.r_info);
    }
};

typedef serializable<Elf_RelHack_Traits> Elf_RelHack;

class ElfRelHack_Section: public ElfSection {
public:
    ElfRelHack_Section(Elf_Shdr &s)
    : ElfSection(s, NULL, NULL)
    {
        name = elfhack_data;
    };

    void serialize(std::ofstream &file, char ei_class, char ei_data)
    {
        for (std::vector<Elf_RelHack>::iterator i = rels.begin();
             i != rels.end(); ++i)
            (*i).serialize(file, ei_class, ei_data);
    }

    bool isRelocatable() {
        return true;
    }

    void push_back(Elf_RelHack &r) {
        rels.push_back(r);
        shdr.sh_size = rels.size() * shdr.sh_entsize;
    }
private:
    std::vector<Elf_RelHack> rels;
};

class ElfRelHackCode_Section: public ElfSection {
public:
    ElfRelHackCode_Section(Elf_Shdr &s, Elf &e, unsigned int init)
    : ElfSection(s, NULL, NULL), parent(e), init(init) {
        std::string file(rundir);
        file += "/inject/";
        switch (parent.getMachine()) {
        case EM_386:
            file += "x86";
            break;
        case EM_X86_64:
            file += "x86_64";
            break;
        case EM_ARM:
            file += "arm";
            break;
        default:
            throw std::runtime_error("unsupported architecture");
        }
        if (!init)
            file += "-noinit";
        file += ".o";
        std::ifstream inject(file.c_str(), std::ios::in|std::ios::binary);
        elf = new Elf(inject);
        if (elf->getType() != ET_REL)
            throw std::runtime_error("object for injected code is not ET_REL");
        if (elf->getMachine() != parent.getMachine())
            throw std::runtime_error("architecture of object for injected code doesn't match");

        ElfSymtab_Section *symtab = NULL;

        // Get all executable sections from the injected code object.
        // Most of the time, there will only be one for the init function,
        // but on e.g. x86, there is a separate section for
        // __i686.get_pc_thunk.$reg
        // Find the symbol table at the same time.
        for (ElfSection *section = elf->getSection(1); section != NULL;
             section = section->getNext()) {
            if ((section->getType() == SHT_PROGBITS) &&
                (section->getFlags() & SHF_EXECINSTR)) {
                code.push_back(section);
                // We need to align this section depending on the greater
                // alignment required by code sections.
                if (shdr.sh_addralign < section->getAddrAlign())
                    shdr.sh_addralign = section->getAddrAlign();
            } else if (section->getType() == SHT_SYMTAB) {
                symtab = (ElfSymtab_Section *) section;
            }
        }
        assert(code.size() != 0);
        if (symtab == NULL)
            throw std::runtime_error("Couldn't find a symbol table for the injected code");

        // Find the init symbol
        entry_point = -1;
        int shndx = 0;
        Elf_SymValue *sym = symtab->lookup("init");
        if (sym) {
            entry_point = sym->value.getValue();
            shndx = sym->value.getSection()->getIndex();
        } else
            throw std::runtime_error("Couldn't find an 'init' symbol in the injected code");

        // Adjust code sections offsets according to their size
        std::vector<ElfSection *>::iterator c = code.begin();
        (*c)->getShdr().sh_addr = 0;
        for(ElfSection *last = *(c++); c != code.end(); c++) {
            unsigned int addr = last->getShdr().sh_addr + last->getSize();
            if (addr & ((*c)->getAddrAlign() - 1))
                addr = (addr | ((*c)->getAddrAlign() - 1)) + 1;
            (*c)->getShdr().sh_addr = addr;
        }
        shdr.sh_size = code.back()->getAddr() + code.back()->getSize();
        data = new char[shdr.sh_size];
        char *buf = data;
        for (c = code.begin(); c != code.end(); c++) {
            memcpy(buf, (*c)->getData(), (*c)->getSize());
            buf += (*c)->getSize();
            if ((*c)->getIndex() < shndx)
                entry_point += (*c)->getSize();
        }
        name = elfhack_text;
    }

    ~ElfRelHackCode_Section() {
        delete elf;
    }

    void serialize(std::ofstream &file, char ei_class, char ei_data)
    {
        // Readjust code offsets
        for (std::vector<ElfSection *>::iterator c = code.begin(); c != code.end(); c++)
            (*c)->getShdr().sh_addr += getAddr();

        // Apply relocations
        for (ElfSection *rel = elf->getSection(1); rel != NULL; rel = rel->getNext())
            if ((rel->getType() == SHT_REL) || (rel->getType() == SHT_RELA)) {
                ElfSection *section = rel->getInfo().section;
                if ((section->getType() == SHT_PROGBITS) && (section->getFlags() & SHF_EXECINSTR)) {
                    if (rel->getType() == SHT_REL)
                        apply_relocations((ElfRel_Section<Elf_Rel> *)rel, section);
                    else
                        apply_relocations((ElfRel_Section<Elf_Rela> *)rel, section);
                }
            }

        ElfSection::serialize(file, ei_class, ei_data);
    }

    bool isRelocatable() {
        return true;
    }

    unsigned int getEntryPoint() {
        return entry_point;
    }
private:
    class pc32_relocation {
    public:
        Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
                              Elf32_Word addend, unsigned int addr)
        {
            return addr + addend - offset - base_addr;
        }
    };

    class arm_plt32_relocation {
    public:
        Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
                              Elf32_Word addend, unsigned int addr)
        {
            // We don't care about sign_extend because the only case where this is
            // going to be used only jumps forward.
            Elf32_Addr tmp = (Elf32_Addr) (addr - offset - base_addr) >> 2;
            tmp = (addend + tmp) & 0x00ffffff;
            return (addend & 0xff000000) | tmp;
        }
    };

    class arm_thm_jump24_relocation {
    public:
        Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
                              Elf32_Word addend, unsigned int addr)
        {
            /* Follows description of b.w and bl instructions as per
               ARM Architecture Reference Manual ARMĀ® v7-A and ARMĀ® v7-R edition, A8.6.16
               We limit ourselves to Encoding T4 of b.w and Encoding T1 of bl.
               We don't care about sign_extend because the only case where this is
               going to be used only jumps forward. */
            Elf32_Addr tmp = (Elf32_Addr) (addr - offset - base_addr);
            unsigned int word0 = addend & 0xffff,
                         word1 = addend >> 16;

            if (((word0 & 0xf800) != 0xf000) || ((word1 & 0x9000) != 0x9000))
                throw std::runtime_error("R_ARM_THM_JUMP24/R_ARM_THM_CALL relocation only supported for B.W <label> and BL <label>");

            unsigned int s = (word0 & (1 << 10)) >> 10;
            unsigned int j1 = (word1 & (1 << 13)) >> 13;
            unsigned int j2 = (word1 & (1 << 11)) >> 11;
            unsigned int i1 = j1 ^ s ? 0 : 1;
            unsigned int i2 = j2 ^ s ? 0 : 1;

            tmp += ((s << 24) | (i1 << 23) | (i2 << 22) | ((word0 & 0x3ff) << 12) | ((word1 & 0x7ff) << 1));

            s = (tmp & (1 << 24)) >> 24;
            j1 = ((tmp & (1 << 23)) >> 23) ^ !s;
            j2 = ((tmp & (1 << 22)) >> 22) ^ !s;

            return 0xf000 | (s << 10) | ((tmp & (0x3ff << 12)) >> 12) |
                   ((word1 & 0xd000) << 16) | (j1 << 29) | (j2 << 27) | ((tmp & 0xffe) << 15);
        }
    };

    class gotoff_relocation {
    public:
        Elf32_Addr operator()(unsigned int base_addr, Elf32_Off offset,
                              Elf32_Word addend, unsigned int addr)
        {
            return addr + addend;
        }
    };

    template <class relocation_type>
    void apply_relocation(ElfSection *the_code, char *base, Elf_Rel *r, unsigned int addr)
    {
        relocation_type relocation;
        Elf32_Addr value;
        memcpy(&value, base + r->r_offset, 4);
        value = relocation(the_code->getAddr(), r->r_offset, value, addr);
        memcpy(base + r->r_offset, &value, 4);
    }

    template <class relocation_type>
    void apply_relocation(ElfSection *the_code, char *base, Elf_Rela *r, unsigned int addr)
    {
        relocation_type relocation;
        Elf32_Addr value = relocation(the_code->getAddr(), r->r_offset, r->r_addend, addr);
        memcpy(base + r->r_offset, &value, 4);
    }

    template <typename Rel_Type>
    void apply_relocations(ElfRel_Section<Rel_Type> *rel, ElfSection *the_code)
    {
        assert(rel->getType() == Rel_Type::sh_type);
        char *buf = data + (the_code->getAddr() - code.front()->getAddr());
        // TODO: various checks on the sections
        ElfSymtab_Section *symtab = (ElfSymtab_Section *)rel->getLink();
        for (typename std::vector<Rel_Type>::iterator r = rel->rels.begin(); r != rel->rels.end(); r++) {
            // TODO: various checks on the symbol
            const char *name = symtab->syms[ELF32_R_SYM(r->r_info)].name;
            unsigned int addr;
            if (symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection() == NULL) {
                if (strcmp(name, "relhack") == 0) {
                    addr = getNext()->getAddr();
                } else if (strcmp(name, "elf_header") == 0) {
                    // TODO: change this ungly hack to something better
                    ElfSection *ehdr = parent.getSection(1)->getPrevious()->getPrevious();
                    addr = ehdr->getAddr();
                } else if (strcmp(name, "original_init") == 0) {
                    addr = init;
                } else if (strcmp(name, "_GLOBAL_OFFSET_TABLE_") == 0) {
                    // We actually don't need a GOT, but need it as a reference for
                    // GOTOFF relocations. We'll just use the start of the ELF file
                    addr = 0;
                } else if (strcmp(name, "") == 0) {
                    // This is for R_ARM_V4BX, until we find something better
                    addr = -1;
                } else {
                    throw std::runtime_error("Unsupported symbol in relocation");
                }
            } else {
                ElfSection *section = symtab->syms[ELF32_R_SYM(r->r_info)].value.getSection();
                assert((section->getType() == SHT_PROGBITS) && (section->getFlags() & SHF_EXECINSTR));
                addr = symtab->syms[ELF32_R_SYM(r->r_info)].value.getValue();
            }
            // Do the relocation
#define REL(machine, type) (EM_ ## machine | (R_ ## machine ## _ ## type << 8))
            switch (elf->getMachine() | (ELF32_R_TYPE(r->r_info) << 8)) {
            case REL(X86_64, PC32):
            case REL(386, PC32):
            case REL(386, GOTPC):
            case REL(ARM, GOTPC):
            case REL(ARM, REL32):
                apply_relocation<pc32_relocation>(the_code, buf, &*r, addr);
                break;
            case REL(ARM, PLT32):
                apply_relocation<arm_plt32_relocation>(the_code, buf, &*r, addr);
                break;
            case REL(ARM, THM_PC22 /* THM_CALL */):
            case REL(ARM, THM_JUMP24):
                apply_relocation<arm_thm_jump24_relocation>(the_code, buf, &*r, addr);
                break;
            case REL(386, GOTOFF):
            case REL(ARM, GOTOFF):
                apply_relocation<gotoff_relocation>(the_code, buf, &*r, addr);
                break;
            case REL(ARM, V4BX):
                // Ignore R_ARM_V4BX relocations
                break;
            default:
                throw std::runtime_error("Unsupported relocation type");
            }
        }
    }

    Elf *elf, &parent;
    std::vector<ElfSection *> code;
    unsigned int init;
    int entry_point;
};

unsigned int get_addend(Elf_Rel *rel, Elf *elf) {
    ElfLocation loc(rel->r_offset, elf);
    Elf_Addr addr(loc.getBuffer(), Elf_Addr::size(elf->getClass()), elf->getClass(), elf->getData());
    return addr.value;
}

unsigned int get_addend(Elf_Rela *rel, Elf *elf) {
    return rel->r_addend;
}

void set_relative_reloc(Elf_Rel *rel, Elf *elf, unsigned int value) {
    ElfLocation loc(rel->r_offset, elf);
    Elf_Addr addr;
    addr.value = value;
    addr.serialize(const_cast<char *>(loc.getBuffer()), Elf_Addr::size(elf->getClass()), elf->getClass(), elf->getData());
}

void set_relative_reloc(Elf_Rela *rel, Elf *elf, unsigned int value) {
    // ld puts the value of relocated relocations both in the addend and
    // at r_offset. For consistency, keep it that way.
    set_relative_reloc((Elf_Rel *)rel, elf, value);
    rel->r_addend = value;
}

void maybe_split_segment(Elf *elf, ElfSegment *segment, bool fill)
{
    std::list<ElfSection *>::iterator it = segment->begin();
    for (ElfSection *last = *(it++); it != segment->end(); last = *(it++)) {
        // When two consecutive non-SHT_NOBITS sections are apart by more
        // than the alignment of the section, the second can be moved closer
        // to the first, but this requires the segment to be split.
        if (((*it)->getType() != SHT_NOBITS) && (last->getType() != SHT_NOBITS) &&
            ((*it)->getOffset() - last->getOffset() - last->getSize() > segment->getAlign())) {
            // Probably very wrong.
            Elf_Phdr phdr;
            phdr.p_type = PT_LOAD;
            phdr.p_vaddr = 0;
            phdr.p_paddr = phdr.p_vaddr + segment->getVPDiff();
            phdr.p_flags = segment->getFlags();
            phdr.p_align = segment->getAlign();
            phdr.p_filesz = (unsigned int)-1;
            phdr.p_memsz = (unsigned int)-1;
            ElfSegment *newSegment = new ElfSegment(&phdr);
            elf->insertSegmentAfter(segment, newSegment);
            ElfSection *section = *it;
            for (; it != segment->end(); ++it) {
                newSegment->addSection(*it);
            }
            for (it = newSegment->begin(); it != newSegment->end(); it++) {
                segment->removeSection(*it);
            }
            // Fill the virtual address space gap left between the two PT_LOADs
            // with a new PT_LOAD with no permissions. This avoids the linker
            // (especially bionic's) filling the gap with anonymous memory,
            // which breakpad doesn't like.
            // /!\ running strip on a elfhacked binary will break this filler
            // PT_LOAD.
            if (!fill)
                break;
            // Insert dummy segment to normalize the entire Elf with the header
            // sizes adjusted, before inserting a filler segment.
            {
              memset(&phdr, 0, sizeof(phdr));
              ElfSegment dummySegment(&phdr);
              elf->insertSegmentAfter(segment, &dummySegment);
              elf->normalize();
              elf->removeSegment(&dummySegment);
            }
            ElfSection *previous = section->getPrevious();
            phdr.p_type = PT_LOAD;
            phdr.p_vaddr = (previous->getAddr() + previous->getSize() + segment->getAlign() - 1) & ~(segment->getAlign() - 1);
            phdr.p_paddr = phdr.p_vaddr + segment->getVPDiff();
            phdr.p_flags = 0;
            phdr.p_align = 0;
            phdr.p_filesz = (section->getAddr() & ~(newSegment->getAlign() - 1)) - phdr.p_vaddr;
            phdr.p_memsz = phdr.p_filesz;
            if (phdr.p_filesz) {
                newSegment = new ElfSegment(&phdr);
                assert(newSegment->isElfHackFillerSegment());
                elf->insertSegmentAfter(segment, newSegment);
            } else {
                elf->normalize();
            }
            break;
        }
    }
}

template <typename Rel_Type>
int do_relocation_section(Elf *elf, unsigned int rel_type, unsigned int rel_type2, bool force, bool fill)
{
    ElfDynamic_Section *dyn = elf->getDynSection();
    if (dyn ==NULL) {
        fprintf(stderr, "Couldn't find SHT_DYNAMIC section\n");
        return -1;
    }

    ElfSegment *relro = elf->getSegmentByType(PT_GNU_RELRO);

    ElfRel_Section<Rel_Type> *section = (ElfRel_Section<Rel_Type> *)dyn->getSectionForType(Rel_Type::d_tag);
    assert(section->getType() == Rel_Type::sh_type);

    Elf32_Shdr relhack32_section =
        { 0, SHT_PROGBITS, SHF_ALLOC, 0, (Elf32_Off)-1, 0, SHN_UNDEF, 0,
          Elf_RelHack::size(elf->getClass()), Elf_RelHack::size(elf->getClass()) }; // TODO: sh_addralign should be an alignment, not size
    Elf32_Shdr relhackcode32_section =
        { 0, SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, 0, (Elf32_Off)-1, 0,
          SHN_UNDEF, 0, 1, 0 };

    unsigned int entry_sz = Elf_Addr::size(elf->getClass());

    // The injected code needs to be executed before any init code in the
    // binary. There are three possible cases:
    // - The binary has no init code at all. In this case, we will add a
    //   DT_INIT entry pointing to the injected code.
    // - The binary has a DT_INIT entry. In this case, we will interpose:
    //   we change DT_INIT to point to the injected code, and have the
    //   injected code call the original DT_INIT entry point.
    // - The binary has no DT_INIT entry, but has a DT_INIT_ARRAY. In this
    //   case, we interpose as well, by replacing the first entry in the
    //   array to point to the injected code, and have the injected code
    //   call the original first entry.
    // The binary may have .ctors instead of DT_INIT_ARRAY, for its init
    // functions, but this falls into the second case above, since .ctors
    // are actually run by DT_INIT code.
    ElfValue *value = dyn->getValueForType(DT_INIT);
    unsigned int original_init = value ? value->getValue() : 0;
    ElfSection *init_array = NULL;
    if (!value || !value->getValue()) {
        value = dyn->getValueForType(DT_INIT_ARRAYSZ);
        if (value && value->getValue() >= entry_sz)
            init_array = dyn->getSectionForType(DT_INIT_ARRAY);
    }

    Elf_Shdr relhack_section(relhack32_section);
    Elf_Shdr relhackcode_section(relhackcode32_section);
    ElfRelHack_Section *relhack = new ElfRelHack_Section(relhack_section);

    ElfSymtab_Section *symtab = (ElfSymtab_Section *) section->getLink();
    Elf_SymValue *sym = symtab->lookup("__cxa_pure_virtual");

    std::vector<Rel_Type> new_rels;
    Elf_RelHack relhack_entry;
    relhack_entry.r_offset = relhack_entry.r_info = 0;
    size_t init_array_reloc = 0;
    for (typename std::vector<Rel_Type>::iterator i = section->rels.begin();
         i != section->rels.end(); i++) {
        // We don't need to keep R_*_NONE relocations
        if (!ELF32_R_TYPE(i->r_info))
            continue;
        ElfLocation loc(i->r_offset, elf);
        // __cxa_pure_virtual is a function used in vtables to point at pure
        // virtual methods. The __cxa_pure_virtual function usually abort()s.
        // These functions are however normally never called. In the case
        // where they would, jumping to the NULL address instead of calling
        // __cxa_pure_virtual is going to work just as well. So we can remove
        // relocations for the __cxa_pure_virtual symbol and NULL out the
        // content at the offset pointed by the relocation.
        if (sym) {
            if (sym->defined) {
                // If we are statically linked to libstdc++, the
                // __cxa_pure_virtual symbol is defined in our lib, and we
                // have relative relocations (rel_type) for it.
                if (ELF32_R_TYPE(i->r_info) == rel_type) {
                    Elf_Addr addr(loc.getBuffer(), entry_sz, elf->getClass(), elf->getData());
                    if (addr.value == sym->value.getValue()) {
                        memset((char *)loc.getBuffer(), 0, entry_sz);
                        continue;
                    }
                }
            } else {
                // If we are dynamically linked to libstdc++, the
                // __cxa_pure_virtual symbol is undefined in our lib, and we
                // have absolute relocations (rel_type2) for it.
                if ((ELF32_R_TYPE(i->r_info) == rel_type2) &&
                    (sym == &symtab->syms[ELF32_R_SYM(i->r_info)])) {
                    memset((char *)loc.getBuffer(), 0, entry_sz);
                    continue;
                }
            }
        }
        // Keep track of the relocation associated with the first init_array entry.
        if (init_array && i->r_offset == init_array->getAddr()) {
            if (init_array_reloc) {
                fprintf(stderr, "Found multiple relocations for the first init_array entry. Skipping\n");
                return -1;
            }
            new_rels.push_back(*i);
            init_array_reloc = new_rels.size();
        } else if (!(loc.getSection()->getFlags() & SHF_WRITE) || (ELF32_R_TYPE(i->r_info) != rel_type) ||
                   (relro && (i->r_offset >= relro->getAddr()) &&
                   (i->r_offset < relro->getAddr() + relro->getMemSize()))) {
            // Don't pack relocations happening in non writable sections.
            // Our injected code is likely not to be allowed to write there.
            new_rels.push_back(*i);
        } else {
            // TODO: check that i->r_addend == *i->r_offset
            if (i->r_offset == relhack_entry.r_offset + relhack_entry.r_info * entry_sz) {
                relhack_entry.r_info++;
            } else {
                if (relhack_entry.r_offset)
                    relhack->push_back(relhack_entry);
                relhack_entry.r_offset = i->r_offset;
                relhack_entry.r_info = 1;
            }
        }
    }
    if (relhack_entry.r_offset)
        relhack->push_back(relhack_entry);
    // Last entry must be NULL
    relhack_entry.r_offset = relhack_entry.r_info = 0;
    relhack->push_back(relhack_entry);

    unsigned int old_end = section->getOffset() + section->getSize();

    if (init_array) {
        if (! init_array_reloc) {
            fprintf(stderr, "Didn't find relocation for DT_INIT_ARRAY's first entry. Skipping\n");
            return -1;
        }
        Rel_Type *rel = &new_rels[init_array_reloc - 1];
        unsigned int addend = get_addend(rel, elf);
        // Use relocated value of DT_INIT_ARRAY's first entry for the
        // function to be called by the injected code.
        if (ELF32_R_TYPE(rel->r_info) == rel_type) {
            original_init = addend;
        } else if (ELF32_R_TYPE(rel->r_info) == rel_type2) {
            ElfSymtab_Section *symtab = (ElfSymtab_Section *)section->getLink();
            original_init = symtab->syms[ELF32_R_SYM(rel->r_info)].value.getValue() + addend;
        } else {
            fprintf(stderr, "Unsupported relocation type for DT_INIT_ARRAY's first entry. Skipping\n");
            return -1;
        }
    }

    section->rels.assign(new_rels.begin(), new_rels.end());
    section->shrink(new_rels.size() * section->getEntSize());

    ElfRelHackCode_Section *relhackcode = new ElfRelHackCode_Section(relhackcode_section, *elf, original_init);
    relhackcode->insertBefore(section);
    relhack->insertAfter(relhackcode);
    if (section->getOffset() + section->getSize() >= old_end) {
        fprintf(stderr, "No gain. Skipping\n");
        return -1;
    }

    // Adjust PT_LOAD segments
    for (ElfSegment *segment = elf->getSegmentByType(PT_LOAD); segment;
         segment = elf->getSegmentByType(PT_LOAD, segment)) {
        maybe_split_segment(elf, segment, fill);
    }

    // Ensure Elf sections will be at their final location.
    elf->normalize();
    ElfLocation *init = new ElfLocation(relhackcode, relhackcode->getEntryPoint());
    if (init_array) {
        // Adjust the first DT_INIT_ARRAY entry to point at the injected code
        // by transforming its relocation into a relative one pointing to the
        // address of the injected code.
        Rel_Type *rel = &section->rels[init_array_reloc - 1];
        rel->r_info = ELF32_R_INFO(0, rel_type); // Set as a relative relocation
        set_relative_reloc(&section->rels[init_array_reloc - 1], elf, init->getValue());
    } else if (!dyn->setValueForType(DT_INIT, init)) {
        fprintf(stderr, "Can't grow .dynamic section to set DT_INIT. Skipping\n");
        return -1;
    }
    // TODO: adjust the value according to the remaining number of relative relocations
    if (dyn->getValueForType(Rel_Type::d_tag_count))
        dyn->setValueForType(Rel_Type::d_tag_count, new ElfPlainValue(0));

    return 0;
}

static inline int backup_file(const char *name)
{
    std::string fname(name);
    fname += ".bak";
    return rename(name, fname.c_str());
}

void do_file(const char *name, bool backup = false, bool force = false, bool fill = false)
{
    std::ifstream file(name, std::ios::in|std::ios::binary);
    Elf elf(file);
    unsigned int size = elf.getSize();
    fprintf(stderr, "%s: ", name);
    if (elf.getType() != ET_DYN) {
        fprintf(stderr, "Not a shared object. Skipping\n");
        return;
    }

    for (ElfSection *section = elf.getSection(1); section != NULL;
         section = section->getNext()) {
        if (section->getName() &&
            (strncmp(section->getName(), ".elfhack.", 9) == 0)) {
            fprintf(stderr, "Already elfhacked. Skipping\n");
            return;
        }
    }

    int exit = -1;
    switch (elf.getMachine()) {
    case EM_386:
        exit = do_relocation_section<Elf_Rel>(&elf, R_386_RELATIVE, R_386_32, force, fill);
        break;
    case EM_X86_64:
        exit = do_relocation_section<Elf_Rela>(&elf, R_X86_64_RELATIVE, R_X86_64_64, force, fill);
        break;
    case EM_ARM:
        exit = do_relocation_section<Elf_Rel>(&elf, R_ARM_RELATIVE, R_ARM_ABS32, force, fill);
        break;
    }
    if (exit == 0) {
        if (!force && (elf.getSize() >= size)) {
            fprintf(stderr, "No gain. Skipping\n");
        } else if (backup && backup_file(name) != 0) {
            fprintf(stderr, "Couln't create backup file\n");
        } else {
            std::ofstream ofile(name, std::ios::out|std::ios::binary|std::ios::trunc);
            elf.write(ofile);
            fprintf(stderr, "Reduced by %d bytes\n", size - elf.getSize());
        }
    }
}

void undo_file(const char *name, bool backup = false)
{
    std::ifstream file(name, std::ios::in|std::ios::binary);
    Elf elf(file);
    unsigned int size = elf.getSize();
    fprintf(stderr, "%s: ", name);
    if (elf.getType() != ET_DYN) {
        fprintf(stderr, "Not a shared object. Skipping\n");
        return;
    }

    ElfSection *data = NULL, *text = NULL;
    for (ElfSection *section = elf.getSection(1); section != NULL;
         section = section->getNext()) {
        if (section->getName() &&
            (strcmp(section->getName(), elfhack_data) == 0))
            data = section;
        if (section->getName() &&
            (strcmp(section->getName(), elfhack_text) == 0))
            text = section;
    }

    if (!data || !text) {
        fprintf(stderr, "Not elfhacked. Skipping\n");
        return;
    }
    if (data != text->getNext()) {
        fprintf(stderr, elfhack_data " section not following " elfhack_text ". Skipping\n");
        return;
    }

    ElfSegment *first = elf.getSegmentByType(PT_LOAD);
    ElfSegment *second = elf.getSegmentByType(PT_LOAD, first);
    ElfSegment *filler = NULL;
    // If the second PT_LOAD is a filler from elfhack --fill, check the third.
    if (!second->isElfHackFillerSegment()) {
        filler = second;
        second = elf.getSegmentByType(PT_LOAD, filler);
    }
    if (second->getFlags() != first->getFlags()) {
        fprintf(stderr, "Couldn't identify elfhacked PT_LOAD segments. Skipping\n");
        return;
    }
    // Move sections from the second PT_LOAD to the first, and remove the
    // second PT_LOAD segment.
    for (std::list<ElfSection *>::iterator section = second->begin();
         section != second->end(); ++section)
        first->addSection(*section);

    elf.removeSegment(second);
    if (filler)
        elf.removeSegment(filler);

    if (backup && backup_file(name) != 0) {
        fprintf(stderr, "Couln't create backup file\n");
    } else {
        std::ofstream ofile(name, std::ios::out|std::ios::binary|std::ios::trunc);
        elf.write(ofile);
        fprintf(stderr, "Grown by %d bytes\n", elf.getSize() - size);
    }
}

int main(int argc, char *argv[])
{
    int arg;
    bool backup = false;
    bool force = false;
    bool revert = false;
    bool fill = false;
    char *lastSlash = rindex(argv[0], '/');
    if (lastSlash != NULL)
        rundir = strndup(argv[0], lastSlash - argv[0]);
    for (arg = 1; arg < argc; arg++) {
        if (strcmp(argv[arg], "-f") == 0)
            force = true;
        else if (strcmp(argv[arg], "-b") == 0)
            backup = true;
        else if (strcmp(argv[arg], "-r") == 0)
            revert = true;
        else if (strcmp(argv[arg], "--fill") == 0)
            fill = true;
        else if (revert) {
            undo_file(argv[arg], backup);
        } else
            do_file(argv[arg], backup, force, fill);
    }

    free(rundir);
    return 0;
}