DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d38398e5144e)

VCS Links

AbstractCanonical

AbstractMirror

Canonical

Impl

Impl

Mirror

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#if !defined(StateMirroring_h_)
#define StateMirroring_h_

#include "mozilla/Maybe.h"
#include "mozilla/MozPromise.h"
#include "mozilla/StateWatching.h"
#include "mozilla/TaskDispatcher.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Unused.h"

#include "mozilla/Logging.h"
#include "nsISupportsImpl.h"

/*
 * The state-mirroring machinery allows pieces of interesting state to be
 * observed on multiple thread without locking. The basic strategy is to track
 * changes in a canonical value and post updates to other threads that hold
 * mirrors for that value.
 *
 * One problem with the naive implementation of such a system is that some pieces
 * of state need to be updated atomically, and certain other operations need to
 * wait for these atomic updates to complete before executing. The state-mirroring
 * machinery solves this problem by requiring that its owner thread uses tail
 * dispatch, and posting state update events (which should always be run first by
 * TaskDispatcher implementations) to that tail dispatcher. This ensures that
 * state changes are always atomic from the perspective of observing threads.
 *
 * Given that state-mirroring is an automatic background process, we try to avoid
 * burdening the caller with worrying too much about teardown. To that end, we
 * don't assert dispatch success for any of the notifications, and assume that
 * any canonical or mirror owned by a thread for whom dispatch fails will soon
 * be disconnected by its holder anyway.
 *
 * Given that semantics may change and comments tend to go out of date, we
 * deliberately don't provide usage examples here. Grep around to find them.
 */

namespace mozilla {

// Mirror<T> and Canonical<T> inherit WatchTarget, so we piggy-back on the
// logging that WatchTarget already does. Given that, it makes sense to share
// the same log module.
#define MIRROR_LOG(x, ...) \
  MOZ_ASSERT(gStateWatchingLog); \
  MOZ_LOG(gStateWatchingLog, LogLevel::Debug, (x, ##__VA_ARGS__))

template<typename T> class AbstractMirror;

/*
 * AbstractCanonical is a superclass from which all Canonical values must
 * inherit. It serves as the interface of operations which may be performed (via
 * asynchronous dispatch) by other threads, in particular by the corresponding
 * Mirror value.
 */
template<typename T>
class AbstractCanonical
{
public:
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(AbstractCanonical)
  AbstractCanonical(AbstractThread* aThread) : mOwnerThread(aThread) {}
  virtual void AddMirror(AbstractMirror<T>* aMirror) = 0;
  virtual void RemoveMirror(AbstractMirror<T>* aMirror) = 0;

  AbstractThread* OwnerThread() const { return mOwnerThread; }
protected:
  virtual ~AbstractCanonical() {}
  RefPtr<AbstractThread> mOwnerThread;
};

/*
 * AbstractMirror is a superclass from which all Mirror values must
 * inherit. It serves as the interface of operations which may be performed (via
 * asynchronous dispatch) by other threads, in particular by the corresponding
 * Canonical value.
 */
template<typename T>
class AbstractMirror
{
public:
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(AbstractMirror)
  AbstractMirror(AbstractThread* aThread) : mOwnerThread(aThread) {}
  virtual void UpdateValue(const T& aNewValue) = 0;
  virtual void NotifyDisconnected() = 0;

  AbstractThread* OwnerThread() const { return mOwnerThread; }
protected:
  virtual ~AbstractMirror() {}
  RefPtr<AbstractThread> mOwnerThread;
};

/*
 * Canonical<T> is a wrapper class that allows a given value to be mirrored by other
 * threads. It maintains a list of active mirrors, and queues updates for them
 * when the internal value changes. When changing the value, the caller needs to
 * pass a TaskDispatcher object, which fires the updates at the appropriate time.
 * Canonical<T> is also a WatchTarget, and may be set up to trigger other routines
 * (on the same thread) when the canonical value changes.
 *
 * Canonical<T> is intended to be used as a member variable, so it doesn't actually
 * inherit AbstractCanonical<T> (a refcounted type). Rather, it contains an inner
 * class called |Impl| that implements most of the interesting logic.
 */
template<typename T>
class Canonical
{
public:
  Canonical(AbstractThread* aThread, const T& aInitialValue, const char* aName)
  {
    mImpl = new Impl(aThread, aInitialValue, aName);
  }


  ~Canonical() {}

private:
  class Impl : public AbstractCanonical<T>, public WatchTarget
  {
  public:
    using AbstractCanonical<T>::OwnerThread;

    Impl(AbstractThread* aThread, const T& aInitialValue, const char* aName)
      : AbstractCanonical<T>(aThread), WatchTarget(aName), mValue(aInitialValue)
    {
      MIRROR_LOG("%s [%p] initialized", mName, this);
      MOZ_ASSERT(aThread->SupportsTailDispatch(), "Can't get coherency without tail dispatch");
    }

    void AddMirror(AbstractMirror<T>* aMirror) override
    {
      MIRROR_LOG("%s [%p] adding mirror %p", mName, this, aMirror);
      MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
      MOZ_ASSERT(!mMirrors.Contains(aMirror));
      mMirrors.AppendElement(aMirror);
      aMirror->OwnerThread()->DispatchStateChange(MakeNotifier(aMirror));
    }

    void RemoveMirror(AbstractMirror<T>* aMirror) override
    {
      MIRROR_LOG("%s [%p] removing mirror %p", mName, this, aMirror);
      MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
      MOZ_ASSERT(mMirrors.Contains(aMirror));
      mMirrors.RemoveElement(aMirror);
    }

    void DisconnectAll()
    {
      MIRROR_LOG("%s [%p] Disconnecting all mirrors", mName, this);
      for (size_t i = 0; i < mMirrors.Length(); ++i) {
        mMirrors[i]->OwnerThread()->Dispatch(NewRunnableMethod(mMirrors[i],
                                                               &AbstractMirror<T>::NotifyDisconnected),
                                             AbstractThread::DontAssertDispatchSuccess);
      }
      mMirrors.Clear();
    }

    operator const T&()
    {
      MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
      return mValue;
    }

    void Set(const T& aNewValue)
    {
      MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());

      if (aNewValue == mValue) {
        return;
      }

      // Notify same-thread watchers. The state watching machinery will make sure
      // that notifications run at the right time.
      NotifyWatchers();

      // Check if we've already got a pending update. If so we won't schedule another
      // one.
      bool alreadyNotifying = mInitialValue.isSome();

      // Stash the initial value if needed, then update to the new value.
      if (mInitialValue.isNothing()) {
        mInitialValue.emplace(mValue);
      }
      mValue = aNewValue;

      // We wait until things have stablized before sending state updates so that
      // we can avoid sending multiple updates, and possibly avoid sending any
      // updates at all if the value ends up where it started.
      if (!alreadyNotifying) {
        AbstractThread::DispatchDirectTask(NewRunnableMethod(this, &Impl::DoNotify));
      }
    }

    Impl& operator=(const T& aNewValue) { Set(aNewValue); return *this; }
    Impl& operator=(const Impl& aOther) { Set(aOther); return *this; }
    Impl(const Impl& aOther) = delete;

  protected:
    ~Impl() { MOZ_DIAGNOSTIC_ASSERT(mMirrors.IsEmpty()); }

  private:
    void DoNotify()
    {
      MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
      MOZ_ASSERT(mInitialValue.isSome());
      bool same = mInitialValue.ref() == mValue;
      mInitialValue.reset();

      if (same) {
        MIRROR_LOG("%s [%p] unchanged - not sending update", mName, this);
        return;
      }

      for (size_t i = 0; i < mMirrors.Length(); ++i) {
        mMirrors[i]->OwnerThread()->DispatchStateChange(MakeNotifier(mMirrors[i]));
      }
    }

    already_AddRefed<nsIRunnable> MakeNotifier(AbstractMirror<T>* aMirror)
    {
      return NewRunnableMethod<T>(aMirror, &AbstractMirror<T>::UpdateValue, mValue);;
    }

    T mValue;
    Maybe<T> mInitialValue;
    nsTArray<RefPtr<AbstractMirror<T>>> mMirrors;
  };
public:

  // NB: Because mirror-initiated disconnection can race with canonical-
  // initiated disconnection, a canonical should never be reinitialized.
  // Forward control operations to the Impl.
  void DisconnectAll() { return mImpl->DisconnectAll(); }

  // Access to the Impl.
  operator Impl&() { return *mImpl; }
  Impl* operator&() { return mImpl; }

  // Access to the T.
  const T& Ref() const { return *mImpl; }
  operator const T&() const { return Ref(); }
  void Set(const T& aNewValue) { mImpl->Set(aNewValue); }
  Canonical& operator=(const T& aNewValue) { Set(aNewValue); return *this; }
  Canonical& operator=(const Canonical& aOther) { Set(aOther); return *this; }
  Canonical(const Canonical& aOther) = delete;

private:
  RefPtr<Impl> mImpl;
};

/*
 * Mirror<T> is a wrapper class that allows a given value to mirror that of a
 * Canonical<T> owned by another thread. It registers itself with a Canonical<T>,
 * and is periodically updated with new values. Mirror<T> is also a WatchTarget,
 * and may be set up to trigger other routines (on the same thread) when the
 * mirrored value changes.
 *
 * Mirror<T> is intended to be used as a member variable, so it doesn't actually
 * inherit AbstractMirror<T> (a refcounted type). Rather, it contains an inner
 * class called |Impl| that implements most of the interesting logic.
 */
template<typename T>
class Mirror
{
public:
  Mirror(AbstractThread* aThread, const T& aInitialValue, const char* aName)
  {
    mImpl = new Impl(aThread, aInitialValue, aName);
  }

  ~Mirror()
  {
    // As a member of complex objects, a Mirror<T> may be destroyed on a
    // different thread than its owner, or late in shutdown during CC. Given
    // that, we require manual disconnection so that callers can put things in
    // the right place.
    MOZ_DIAGNOSTIC_ASSERT(!mImpl->IsConnected());
  }

private:
  class Impl : public AbstractMirror<T>, public WatchTarget
  {
  public:
    using AbstractMirror<T>::OwnerThread;

    Impl(AbstractThread* aThread, const T& aInitialValue, const char* aName)
      : AbstractMirror<T>(aThread), WatchTarget(aName), mValue(aInitialValue)
    {
      MIRROR_LOG("%s [%p] initialized", mName, this);
      MOZ_ASSERT(aThread->SupportsTailDispatch(), "Can't get coherency without tail dispatch");
    }

    operator const T&()
    {
      MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
      return mValue;
    }

    virtual void UpdateValue(const T& aNewValue) override
    {
      MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
      if (mValue != aNewValue) {
        mValue = aNewValue;
        WatchTarget::NotifyWatchers();
      }
    }

    virtual void NotifyDisconnected() override
    {
      MIRROR_LOG("%s [%p] Notifed of disconnection from %p", mName, this, mCanonical.get());
      MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
      mCanonical = nullptr;
    }

    bool IsConnected() const { return !!mCanonical; }

    void Connect(AbstractCanonical<T>* aCanonical)
    {
      MIRROR_LOG("%s [%p] Connecting to %p", mName, this, aCanonical);
      MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
      MOZ_ASSERT(!IsConnected());
      MOZ_ASSERT(OwnerThread()->RequiresTailDispatch(aCanonical->OwnerThread()), "Can't get coherency without tail dispatch");

      nsCOMPtr<nsIRunnable> r = NewRunnableMethod<StoreRefPtrPassByPtr<AbstractMirror<T>>>
                                  (aCanonical, &AbstractCanonical<T>::AddMirror, this);
      aCanonical->OwnerThread()->Dispatch(r.forget(), AbstractThread::DontAssertDispatchSuccess);
      mCanonical = aCanonical;
    }
  public:

    void DisconnectIfConnected()
    {
      MOZ_ASSERT(OwnerThread()->IsCurrentThreadIn());
      if (!IsConnected()) {
        return;
      }

      MIRROR_LOG("%s [%p] Disconnecting from %p", mName, this, mCanonical.get());
      nsCOMPtr<nsIRunnable> r = NewRunnableMethod<StoreRefPtrPassByPtr<AbstractMirror<T>>>
                                  (mCanonical, &AbstractCanonical<T>::RemoveMirror, this);
      mCanonical->OwnerThread()->Dispatch(r.forget(), AbstractThread::DontAssertDispatchSuccess);
      mCanonical = nullptr;
    }

  protected:
    ~Impl() { MOZ_DIAGNOSTIC_ASSERT(!IsConnected()); }

  private:
    T mValue;
    RefPtr<AbstractCanonical<T>> mCanonical;
  };
public:

  // Forward control operations to the Impl<T>.
  void Connect(AbstractCanonical<T>* aCanonical) { mImpl->Connect(aCanonical); }
  void DisconnectIfConnected() { mImpl->DisconnectIfConnected(); }

  // Access to the Impl<T>.
  operator Impl&() { return *mImpl; }
  Impl* operator&() { return mImpl; }

  // Access to the T.
  const T& Ref() const { return *mImpl; }
  operator const T&() const { return Ref(); }

private:
  RefPtr<Impl> mImpl;
};

#undef MIRROR_LOG

} // namespace mozilla

#endif