DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d38398e5144e)

VCS Links

PlatformData

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/Assertions.h"
#include "mozilla/CheckedInt.h"

#include <errno.h>
#include <pthread.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

#include "mozilla/PlatformConditionVariable.h"
#include "mozilla/PlatformMutex.h"
#include "MutexPlatformData_posix.h"

using mozilla::CheckedInt;
using mozilla::TimeDuration;
using mozilla::TimeStamp;

static const long NanoSecPerSec = 1000000000;

// Android 32-bit & macOS 10.12 has the clock functions, but not pthread_condattr_setclock.
#if defined(HAVE_CLOCK_MONOTONIC) && \
    !(defined(__ANDROID__) && !defined(__LP64__)) && !defined(__APPLE__)
# define CV_USE_CLOCK_API
#endif

#ifdef CV_USE_CLOCK_API
// The C++ specification defines std::condition_variable::wait_for in terms of
// std::chrono::steady_clock, which is closest to CLOCK_MONOTONIC.
static const clockid_t WhichClock = CLOCK_MONOTONIC;

// While timevaladd is widely available to work with timevals, the newer
// timespec structure is largely lacking such conveniences. Thankfully, the
// utilities available in MFBT make implementing our own quite easy.
static void
moz_timespecadd(struct timespec* lhs, struct timespec* rhs, struct timespec* result)
{
  // Add nanoseconds. This may wrap, but not above 2 billion.
  MOZ_RELEASE_ASSERT(lhs->tv_nsec < NanoSecPerSec);
  MOZ_RELEASE_ASSERT(rhs->tv_nsec < NanoSecPerSec);
  result->tv_nsec = lhs->tv_nsec + rhs->tv_nsec;

  // Add seconds, checking for overflow in the platform specific time_t type.
  CheckedInt<time_t> sec = CheckedInt<time_t>(lhs->tv_sec) + rhs->tv_sec;

  // If nanoseconds overflowed, carry the result over into seconds.
  if (result->tv_nsec >= NanoSecPerSec) {
    MOZ_RELEASE_ASSERT(result->tv_nsec < 2 * NanoSecPerSec);
    result->tv_nsec -= NanoSecPerSec;
    sec += 1;
  }

  // Extracting the value asserts that there was no overflow.
  MOZ_RELEASE_ASSERT(sec.isValid());
  result->tv_sec = sec.value();
}
#endif

struct mozilla::detail::ConditionVariableImpl::PlatformData
{
  pthread_cond_t ptCond;
};

mozilla::detail::ConditionVariableImpl::ConditionVariableImpl()
{
  pthread_cond_t* ptCond = &platformData()->ptCond;

#ifdef CV_USE_CLOCK_API
  pthread_condattr_t attr;
  int r0 = pthread_condattr_init(&attr);
  MOZ_RELEASE_ASSERT(!r0);

  int r1 = pthread_condattr_setclock(&attr, WhichClock);
  MOZ_RELEASE_ASSERT(!r1);

  int r2 = pthread_cond_init(ptCond, &attr);
  MOZ_RELEASE_ASSERT(!r2);

  int r3 = pthread_condattr_destroy(&attr);
  MOZ_RELEASE_ASSERT(!r3);
#else
  int r = pthread_cond_init(ptCond, NULL);
  MOZ_RELEASE_ASSERT(!r);
#endif
}

mozilla::detail::ConditionVariableImpl::~ConditionVariableImpl()
{
  int r = pthread_cond_destroy(&platformData()->ptCond);
  MOZ_RELEASE_ASSERT(r == 0);
}

void
mozilla::detail::ConditionVariableImpl::notify_one()
{
  int r = pthread_cond_signal(&platformData()->ptCond);
  MOZ_RELEASE_ASSERT(r == 0);
}

void
mozilla::detail::ConditionVariableImpl::notify_all()
{
  int r = pthread_cond_broadcast(&platformData()->ptCond);
  MOZ_RELEASE_ASSERT(r == 0);
}

void
mozilla::detail::ConditionVariableImpl::wait(MutexImpl& lock)
{
  pthread_cond_t* ptCond = &platformData()->ptCond;
  pthread_mutex_t* ptMutex = &lock.platformData()->ptMutex;

  int r = pthread_cond_wait(ptCond, ptMutex);
  MOZ_RELEASE_ASSERT(r == 0);
}

mozilla::detail::CVStatus
mozilla::detail::ConditionVariableImpl::wait_for(MutexImpl& lock,
						 const TimeDuration& a_rel_time)
{
  if (a_rel_time == TimeDuration::Forever()) {
    wait(lock);
    return CVStatus::NoTimeout;
  }

  pthread_cond_t* ptCond = &platformData()->ptCond;
  pthread_mutex_t* ptMutex = &lock.platformData()->ptMutex;
  int r;

  // Clamp to 0, as time_t is unsigned.
  TimeDuration rel_time = a_rel_time < TimeDuration::FromSeconds(0)
                          ? TimeDuration::FromSeconds(0)
                          : a_rel_time;

  // Convert the duration to a timespec.
  struct timespec rel_ts;
  rel_ts.tv_sec = static_cast<time_t>(rel_time.ToSeconds());
  rel_ts.tv_nsec = static_cast<uint64_t>(rel_time.ToMicroseconds() * 1000.0) % NanoSecPerSec;

#ifdef CV_USE_CLOCK_API
  struct timespec now_ts;
  r = clock_gettime(WhichClock, &now_ts);
  MOZ_RELEASE_ASSERT(!r);

  struct timespec abs_ts;
  moz_timespecadd(&now_ts, &rel_ts, &abs_ts);

  r = pthread_cond_timedwait(ptCond, ptMutex, &abs_ts);
#else
  // Our non-clock-supporting platforms, OS X and Android, do support waiting
  // on a condition variable with a relative timeout.
  r = pthread_cond_timedwait_relative_np(ptCond, ptMutex, &rel_ts);
#endif

  if (r == 0) {
    return CVStatus::NoTimeout;
  }
  MOZ_RELEASE_ASSERT(r == ETIMEDOUT);
  return CVStatus::Timeout;
}

mozilla::detail::ConditionVariableImpl::PlatformData*
mozilla::detail::ConditionVariableImpl::platformData()
{
  static_assert(sizeof platformData_ >= sizeof(PlatformData),
                "platformData_ is too small");
  return reinterpret_cast<PlatformData*>(platformData_);
}