DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d38398e5144e)

VCS Links

EVbool

GenericErrorResult

HasFreeLSB

HasFreeLSB

HasFreeLSB

IsPackableVariant

IsResult

IsResult

Ok

PackingStrategy

Result

ResultImplementation

ResultImplementation

ResultImplementation

ResultImplementation

ResultImplementation

SelectResultImpl

UnusedZero

UnusedZero

VEbool

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/* A type suitable for returning either a value or an error from a function. */

#ifndef mozilla_Result_h
#define mozilla_Result_h

#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Types.h"
#include "mozilla/TypeTraits.h"
#include "mozilla/Variant.h"

namespace mozilla {

/**
 * Empty struct, indicating success for operations that have no return value.
 * For example, if you declare another empty struct `struct OutOfMemory {};`,
 * then `Result<Ok, OutOfMemory>` represents either success or OOM.
 */
struct Ok {};

template <typename E> class GenericErrorResult;
template <typename V, typename E> class Result;

namespace detail {

enum class PackingStrategy {
  Variant,
  NullIsOk,
  LowBitTagIsError,
  PackedVariant,
};

template <typename V, typename E, PackingStrategy Strategy>
class ResultImplementation;

template <typename V, typename E>
class ResultImplementation<V, E, PackingStrategy::Variant>
{
  mozilla::Variant<V, E> mStorage;

public:
  explicit ResultImplementation(V aValue) : mStorage(aValue) {}
  explicit ResultImplementation(E aErrorValue) : mStorage(aErrorValue) {}

  bool isOk() const { return mStorage.template is<V>(); }

  // The callers of these functions will assert isOk() has the proper value, so
  // these functions (in all ResultImplementation specializations) don't need
  // to do so.
  V unwrap() const { return mStorage.template as<V>(); }
  E unwrapErr() const { return mStorage.template as<E>(); }
};

/**
 * mozilla::Variant doesn't like storing a reference. This is a specialization
 * to store E as pointer if it's a reference.
 */
template <typename V, typename E>
class ResultImplementation<V, E&, PackingStrategy::Variant>
{
  mozilla::Variant<V, E*> mStorage;

public:
  explicit ResultImplementation(V aValue) : mStorage(aValue) {}
  explicit ResultImplementation(E& aErrorValue) : mStorage(&aErrorValue) {}

  bool isOk() const { return mStorage.template is<V>(); }
  V unwrap() const { return mStorage.template as<V>(); }
  E& unwrapErr() const { return *mStorage.template as<E*>(); }
};

/**
 * Specialization for when the success type is Ok (or another empty class) and
 * the error type is a reference.
 */
template <typename V, typename E>
class ResultImplementation<V, E&, PackingStrategy::NullIsOk>
{
  E* mErrorValue;

public:
  explicit ResultImplementation(V) : mErrorValue(nullptr) {}
  explicit ResultImplementation(E& aErrorValue) : mErrorValue(&aErrorValue) {}

  bool isOk() const { return mErrorValue == nullptr; }

  V unwrap() const { return V(); }
  E& unwrapErr() const { return *mErrorValue; }
};

/**
 * Specialization for when alignment permits using the least significant bit as
 * a tag bit.
 */
template <typename V, typename E>
class ResultImplementation<V*, E&, PackingStrategy::LowBitTagIsError>
{
  uintptr_t mBits;

public:
  explicit ResultImplementation(V* aValue)
    : mBits(reinterpret_cast<uintptr_t>(aValue))
  {
    MOZ_ASSERT((uintptr_t(aValue) % MOZ_ALIGNOF(V)) == 0,
               "Result value pointers must not be misaligned");
  }
  explicit ResultImplementation(E& aErrorValue)
    : mBits(reinterpret_cast<uintptr_t>(&aErrorValue) | 1)
  {
    MOZ_ASSERT((uintptr_t(&aErrorValue) % MOZ_ALIGNOF(E)) == 0,
               "Result errors must not be misaligned");
  }

  bool isOk() const { return (mBits & 1) == 0; }

  V* unwrap() const { return reinterpret_cast<V*>(mBits); }
  E& unwrapErr() const { return *reinterpret_cast<E*>(mBits ^ 1); }
};

// Return true if any of the struct can fit in a word.
template<typename V, typename E>
struct IsPackableVariant
{
  struct VEbool {
      V v;
      E e;
      bool ok;
  };
  struct EVbool {
      E e;
      V v;
      bool ok;
  };

  using Impl = typename Conditional<sizeof(VEbool) <= sizeof(EVbool),
                                    VEbool, EVbool>::Type;

  static const bool value = sizeof(Impl) <= sizeof(uintptr_t);
};

/**
 * Specialization for when both type are not using all the bytes, in order to
 * use one byte as a tag.
 */
template <typename V, typename E>
class ResultImplementation<V, E, PackingStrategy::PackedVariant>
{
  using Impl = typename IsPackableVariant<V, E>::Impl;
  Impl data;

public:
  explicit ResultImplementation(V aValue)
  {
    data.v = aValue;
    data.ok = true;
  }
  explicit ResultImplementation(E aErrorValue)
  {
    data.e = aErrorValue;
    data.ok = false;
  }

  bool isOk() const { return data.ok; }

  V unwrap() const { return data.v; }
  E unwrapErr() const { return data.e; }
};

// To use nullptr as a special value, we need the counter part to exclude zero
// from its range of valid representations.
//
// By default assume that zero can be represented.
template<typename T>
struct UnusedZero
{
  static const bool value = false;
};

// References can't be null.
template<typename T>
struct UnusedZero<T&>
{
  static const bool value = true;
};

// A bit of help figuring out which of the above specializations to use.
//
// We begin by safely assuming types don't have a spare bit.
template <typename T> struct HasFreeLSB { static const bool value = false; };

// The lowest bit of a properly-aligned pointer is always zero if the pointee
// type is greater than byte-aligned. That bit is free to use if it's masked
// out of such pointers before they're dereferenced.
template <typename T> struct HasFreeLSB<T*> {
  static const bool value = (MOZ_ALIGNOF(T) & 1) == 0;
};

// We store references as pointers, so they have a free bit if a pointer would
// have one.
template <typename T> struct HasFreeLSB<T&> {
  static const bool value = HasFreeLSB<T*>::value;
};

// Select one of the previous result implementation based on the properties of
// the V and E types.
template <typename V, typename E>
struct SelectResultImpl
{
  static const PackingStrategy value =
      (IsEmpty<V>::value && UnusedZero<E>::value)
    ? PackingStrategy::NullIsOk
    : (detail::HasFreeLSB<V>::value && detail::HasFreeLSB<E>::value)
    ? PackingStrategy::LowBitTagIsError
    : (IsDefaultConstructible<V>::value && IsDefaultConstructible<E>::value &&
       IsPackableVariant<V, E>::value)
    ? PackingStrategy::PackedVariant
    : PackingStrategy::Variant;

  using Type = detail::ResultImplementation<V, E, value>;
};

template <typename T>
struct IsResult : FalseType { };

template <typename V, typename E>
struct IsResult<Result<V, E>> : TrueType { };

} // namespace detail

/**
 * Result<V, E> represents the outcome of an operation that can either succeed
 * or fail. It contains either a success value of type V or an error value of
 * type E.
 *
 * All Result methods are const, so results are basically immutable.
 * This is just like Variant<V, E> but with a slightly different API, and the
 * following cases are optimized so Result can be stored more efficiently:
 *
 * - If the success type is Ok (or another empty class) and the error type is a
 *   reference, Result<V, E&> is guaranteed to be pointer-sized and all zero
 *   bits on success. Do not change this representation! There is JIT code that
 *   depends on it.
 *
 * - If the success type is a pointer type and the error type is a reference
 *   type, and the least significant bit is unused for both types when stored
 *   as a pointer (due to alignment rules), Result<V*, E&> is guaranteed to be
 *   pointer-sized. In this case, we use the lowest bit as tag bit: 0 to
 *   indicate the Result's bits are a V, 1 to indicate the Result's bits (with
 *   the 1 masked out) encode an E*.
 *
 * The purpose of Result is to reduce the screwups caused by using `false` or
 * `nullptr` to indicate errors.
 * What screwups? See <https://bugzilla.mozilla.org/show_bug.cgi?id=912928> for
 * a partial list.
 */
template <typename V, typename E>
class MOZ_MUST_USE_TYPE Result final
{
  using Impl = typename detail::SelectResultImpl<V, E>::Type;

  Impl mImpl;

public:
  /**
   * Create a success result.
   */
  MOZ_IMPLICIT Result(V aValue) : mImpl(aValue) { MOZ_ASSERT(isOk()); }

  /**
   * Create an error result.
   */
  explicit Result(E aErrorValue) : mImpl(aErrorValue) { MOZ_ASSERT(isErr()); }

  /**
   * Implementation detail of MOZ_TRY().
   * Create an error result from another error result.
   */
  template <typename E2>
  MOZ_IMPLICIT Result(const GenericErrorResult<E2>& aErrorResult)
    : mImpl(aErrorResult.mErrorValue)
  {
    static_assert(mozilla::IsConvertible<E2, E>::value,
                  "E2 must be convertible to E");
    MOZ_ASSERT(isErr());
  }

  Result(const Result&) = default;
  Result& operator=(const Result&) = default;

  /** True if this Result is a success result. */
  bool isOk() const { return mImpl.isOk(); }

  /** True if this Result is an error result. */
  bool isErr() const { return !mImpl.isOk(); }

  /** Get the success value from this Result, which must be a success result. */
  V unwrap() const {
    MOZ_ASSERT(isOk());
    return mImpl.unwrap();
  }

  /** Get the error value from this Result, which must be an error result. */
  E unwrapErr() const {
    MOZ_ASSERT(isErr());
    return mImpl.unwrapErr();
  }

  /**
   * Map a function V -> W over this result's success variant. If this result is
   * an error, do not invoke the function and return a copy of the error.
   *
   * Mapping over success values invokes the function to produce a new success
   * value:
   *
   *     // Map Result<int, E> to another Result<int, E>
   *     Result<int, E> res(5);
   *     Result<int, E> res2 = res.map([](int x) { return x * x; });
   *     MOZ_ASSERT(res2.unwrap() == 25);
   *
   *     // Map Result<const char*, E> to Result<size_t, E>
   *     Result<const char*, E> res("hello, map!");
   *     Result<size_t, E> res2 = res.map(strlen);
   *     MOZ_ASSERT(res2.unwrap() == 11);
   *
   * Mapping over an error does not invoke the function and copies the error:
   *
   *     Result<V, int> res(5);
   *     MOZ_ASSERT(res.isErr());
   *     Result<W, int> res2 = res.map([](V v) { ... });
   *     MOZ_ASSERT(res2.isErr());
   *     MOZ_ASSERT(res2.unwrapErr() == 5);
   */
  template<typename F>
  auto map(F f) const -> Result<decltype(f(*((V*) nullptr))), E> {
      using RetResult = Result<decltype(f(*((V*) nullptr))), E>;
      return isOk() ? RetResult(f(unwrap())) : RetResult(unwrapErr());
  }

  /**
   * Given a function V -> Result<W, E>, apply it to this result's success value
   * and return its result. If this result is an error value, then return a
   * copy.
   *
   * This is sometimes called "flatMap" or ">>=" in other contexts.
   *
   * `andThen`ing over success values invokes the function to produce a new
   * result:
   *
   *     Result<const char*, Error> res("hello, andThen!");
   *     Result<HtmlFreeString, Error> res2 = res.andThen([](const char* s) {
   *       return containsHtmlTag(s)
   *         ? Result<HtmlFreeString, Error>(Error("Invalid: contains HTML"))
   *         : Result<HtmlFreeString, Error>(HtmlFreeString(s));
   *       }
   *     });
   *     MOZ_ASSERT(res2.isOk());
   *     MOZ_ASSERT(res2.unwrap() == HtmlFreeString("hello, andThen!");
   *
   * `andThen`ing over error results does not invoke the function, and just
   * produces a new copy of the error result:
   *
   *     Result<int, const char*> res("some error");
   *     auto res2 = res.andThen([](int x) { ... });
   *     MOZ_ASSERT(res2.isErr());
   *     MOZ_ASSERT(res.unwrapErr() == res2.unwrapErr());
   */
  template<
      typename F,
      typename = typename EnableIf<
          detail::IsResult<decltype((*((F*) nullptr))(*((V*) nullptr)))>::value
      >::Type
  >
  auto andThen(F f) const -> decltype(f(*((V*) nullptr))) {
      return isOk() ? f(unwrap()) : GenericErrorResult<E>(unwrapErr());
  }
};

/**
 * A type that auto-converts to an error Result. This is like a Result without
 * a success type. It's the best return type for functions that always return
 * an error--functions designed to build and populate error objects. It's also
 * useful in error-handling macros; see MOZ_TRY for an example.
 */
template <typename E>
class MOZ_MUST_USE_TYPE GenericErrorResult
{
  E mErrorValue;

  template<typename V, typename E2> friend class Result;

public:
  explicit GenericErrorResult(E aErrorValue) : mErrorValue(aErrorValue) {}
};

template <typename E>
inline GenericErrorResult<E>
MakeGenericErrorResult(E&& aErrorValue)
{
  return GenericErrorResult<E>(aErrorValue);
}

} // namespace mozilla

/**
 * MOZ_TRY(expr) is the C++ equivalent of Rust's `try!(expr);`. First, it
 * evaluates expr, which must produce a Result value. On success, it
 * discards the result altogether. On error, it immediately returns an error
 * Result from the enclosing function.
 */
#define MOZ_TRY(expr) \
  do { \
    auto mozTryTempResult_ = (expr); \
    if (mozTryTempResult_.isErr()) { \
      return ::mozilla::MakeGenericErrorResult(mozTryTempResult_.unwrapErr()); \
    } \
  } while (0)

/**
 * MOZ_TRY_VAR(target, expr) is the C++ equivalent of Rust's `target = try!(expr);`.
 * First, it evaluates expr, which must produce a Result value.
 * On success, the result's success value is assigned to target.
 * On error, immediately returns the error result.
 * |target| must evaluate to a reference without any side effects.
 */
#define MOZ_TRY_VAR(target, expr) \
  do { \
    auto mozTryVarTempResult_ = (expr); \
    if (mozTryVarTempResult_.isErr()) { \
      return ::mozilla::MakeGenericErrorResult( \
          mozTryVarTempResult_.unwrapErr()); \
    } \
    (target) = mozTryVarTempResult_.unwrap(); \
  } while (0)

#endif // mozilla_Result_h