DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d38398e5144e)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

/*
 * This is an example demonstrating multi-resolution encoding in VP8.
 * High-resolution input video is down-sampled to lower-resolutions. The
 * encoder then encodes the video and outputs multiple bitstreams with
 * different resolutions.
 *
 * This test also allows for settings temporal layers for each spatial layer.
 * Different number of temporal layers per spatial stream may be used.
 * Currently up to 3 temporal layers per spatial stream (encoder) are supported
 * in this test.
 */

#include "./vpx_config.h"

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <assert.h>
#include <sys/time.h>
#include "vpx_ports/vpx_timer.h"
#include "vpx/vpx_encoder.h"
#include "vpx/vp8cx.h"
#include "vpx_ports/mem_ops.h"
#include "../tools_common.h"
#define interface (vpx_codec_vp8_cx())
#define fourcc 0x30385056

void usage_exit(void) { exit(EXIT_FAILURE); }

/*
 * The input video frame is downsampled several times to generate a multi-level
 * hierarchical structure. NUM_ENCODERS is defined as the number of encoding
 * levels required. For example, if the size of input video is 1280x720,
 * NUM_ENCODERS is 3, and down-sampling factor is 2, the encoder outputs 3
 * bitstreams with resolution of 1280x720(level 0), 640x360(level 1), and
 * 320x180(level 2) respectively.
 */

/* Number of encoders (spatial resolutions) used in this test. */
#define NUM_ENCODERS 3

/* Maximum number of temporal layers allowed for this test. */
#define MAX_NUM_TEMPORAL_LAYERS 3

/* This example uses the scaler function in libyuv. */
#include "third_party/libyuv/include/libyuv/basic_types.h"
#include "third_party/libyuv/include/libyuv/scale.h"
#include "third_party/libyuv/include/libyuv/cpu_id.h"

int (*read_frame_p)(FILE *f, vpx_image_t *img);

static int read_frame(FILE *f, vpx_image_t *img) {
  size_t nbytes, to_read;
  int res = 1;

  to_read = img->w * img->h * 3 / 2;
  nbytes = fread(img->planes[0], 1, to_read, f);
  if (nbytes != to_read) {
    res = 0;
    if (nbytes > 0)
      printf("Warning: Read partial frame. Check your width & height!\n");
  }
  return res;
}

static int read_frame_by_row(FILE *f, vpx_image_t *img) {
  size_t nbytes, to_read;
  int res = 1;
  int plane;

  for (plane = 0; plane < 3; plane++) {
    unsigned char *ptr;
    int w = (plane ? (1 + img->d_w) / 2 : img->d_w);
    int h = (plane ? (1 + img->d_h) / 2 : img->d_h);
    int r;

    /* Determine the correct plane based on the image format. The for-loop
     * always counts in Y,U,V order, but this may not match the order of
     * the data on disk.
     */
    switch (plane) {
      case 1:
        ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_V
                                                       : VPX_PLANE_U];
        break;
      case 2:
        ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_U
                                                       : VPX_PLANE_V];
        break;
      default: ptr = img->planes[plane];
    }

    for (r = 0; r < h; r++) {
      to_read = w;

      nbytes = fread(ptr, 1, to_read, f);
      if (nbytes != to_read) {
        res = 0;
        if (nbytes > 0)
          printf("Warning: Read partial frame. Check your width & height!\n");
        break;
      }

      ptr += img->stride[plane];
    }
    if (!res) break;
  }

  return res;
}

static void write_ivf_file_header(FILE *outfile, const vpx_codec_enc_cfg_t *cfg,
                                  int frame_cnt) {
  char header[32];

  if (cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS) return;
  header[0] = 'D';
  header[1] = 'K';
  header[2] = 'I';
  header[3] = 'F';
  mem_put_le16(header + 4, 0);                    /* version */
  mem_put_le16(header + 6, 32);                   /* headersize */
  mem_put_le32(header + 8, fourcc);               /* headersize */
  mem_put_le16(header + 12, cfg->g_w);            /* width */
  mem_put_le16(header + 14, cfg->g_h);            /* height */
  mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */
  mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */
  mem_put_le32(header + 24, frame_cnt);           /* length */
  mem_put_le32(header + 28, 0);                   /* unused */

  (void)fwrite(header, 1, 32, outfile);
}

static void write_ivf_frame_header(FILE *outfile,
                                   const vpx_codec_cx_pkt_t *pkt) {
  char header[12];
  vpx_codec_pts_t pts;

  if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) return;

  pts = pkt->data.frame.pts;
  mem_put_le32(header, pkt->data.frame.sz);
  mem_put_le32(header + 4, pts & 0xFFFFFFFF);
  mem_put_le32(header + 8, pts >> 32);

  (void)fwrite(header, 1, 12, outfile);
}

/* Temporal scaling parameters */
/* This sets all the temporal layer parameters given |num_temporal_layers|,
 * including the target bit allocation across temporal layers. Bit allocation
 * parameters will be passed in as user parameters in another version.
 */
static void set_temporal_layer_pattern(int num_temporal_layers,
                                       vpx_codec_enc_cfg_t *cfg, int bitrate,
                                       int *layer_flags) {
  assert(num_temporal_layers <= MAX_NUM_TEMPORAL_LAYERS);
  switch (num_temporal_layers) {
    case 1: {
      /* 1-layer */
      cfg->ts_number_layers = 1;
      cfg->ts_periodicity = 1;
      cfg->ts_rate_decimator[0] = 1;
      cfg->ts_layer_id[0] = 0;
      cfg->ts_target_bitrate[0] = bitrate;

      // Update L only.
      layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      break;
    }

    case 2: {
      /* 2-layers, with sync point at first frame of layer 1. */
      cfg->ts_number_layers = 2;
      cfg->ts_periodicity = 2;
      cfg->ts_rate_decimator[0] = 2;
      cfg->ts_rate_decimator[1] = 1;
      cfg->ts_layer_id[0] = 0;
      cfg->ts_layer_id[1] = 1;
      // Use 60/40 bit allocation as example.
      cfg->ts_target_bitrate[0] = 0.6f * bitrate;
      cfg->ts_target_bitrate[1] = bitrate;

      /* 0=L, 1=GF */
      // ARF is used as predictor for all frames, and is only updated on
      // key frame. Sync point every 8 frames.

      // Layer 0: predict from L and ARF, update L and G.
      layer_flags[0] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF;

      // Layer 1: sync point: predict from L and ARF, and update G.
      layer_flags[1] =
          VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;

      // Layer 0, predict from L and ARF, update L.
      layer_flags[2] =
          VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;

      // Layer 1: predict from L, G and ARF, and update G.
      layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
                       VP8_EFLAG_NO_UPD_ENTROPY;

      // Layer 0
      layer_flags[4] = layer_flags[2];

      // Layer 1
      layer_flags[5] = layer_flags[3];

      // Layer 0
      layer_flags[6] = layer_flags[4];

      // Layer 1
      layer_flags[7] = layer_flags[5];
      break;
    }

    case 3:
    default: {
      // 3-layers structure where ARF is used as predictor for all frames,
      // and is only updated on key frame.
      // Sync points for layer 1 and 2 every 8 frames.
      cfg->ts_number_layers = 3;
      cfg->ts_periodicity = 4;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      cfg->ts_layer_id[0] = 0;
      cfg->ts_layer_id[1] = 2;
      cfg->ts_layer_id[2] = 1;
      cfg->ts_layer_id[3] = 2;
      // Use 45/20/35 bit allocation as example.
      cfg->ts_target_bitrate[0] = 0.45f * bitrate;
      cfg->ts_target_bitrate[1] = 0.65f * bitrate;
      cfg->ts_target_bitrate[2] = bitrate;

      /* 0=L, 1=GF, 2=ARF */

      // Layer 0: predict from L and ARF; update L and G.
      layer_flags[0] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;

      // Layer 2: sync point: predict from L and ARF; update none.
      layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF |
                       VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
                       VP8_EFLAG_NO_UPD_ENTROPY;

      // Layer 1: sync point: predict from L and ARF; update G.
      layer_flags[2] =
          VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;

      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
                       VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;

      // Layer 0: predict from L and ARF; update L.
      layer_flags[4] =
          VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF;

      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[5] = layer_flags[3];

      // Layer 1: predict from L, G, ARF; update G.
      layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;

      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[7] = layer_flags[3];
      break;
    }
  }
}

/* The periodicity of the pattern given the number of temporal layers. */
static int periodicity_to_num_layers[MAX_NUM_TEMPORAL_LAYERS] = { 1, 8, 8 };

int main(int argc, char **argv) {
  FILE *infile, *outfile[NUM_ENCODERS];
  FILE *downsampled_input[NUM_ENCODERS - 1];
  char filename[50];
  vpx_codec_ctx_t codec[NUM_ENCODERS];
  vpx_codec_enc_cfg_t cfg[NUM_ENCODERS];
  int frame_cnt = 0;
  vpx_image_t raw[NUM_ENCODERS];
  vpx_codec_err_t res[NUM_ENCODERS];

  int i;
  long width;
  long height;
  int length_frame;
  int frame_avail;
  int got_data;
  int flags = 0;
  int layer_id = 0;

  int layer_flags[VPX_TS_MAX_PERIODICITY * NUM_ENCODERS] = { 0 };
  int flag_periodicity;

  /*Currently, only realtime mode is supported in multi-resolution encoding.*/
  int arg_deadline = VPX_DL_REALTIME;

  /* Set show_psnr to 1/0 to show/not show PSNR. Choose show_psnr=0 if you
     don't need to know PSNR, which will skip PSNR calculation and save
     encoding time. */
  int show_psnr = 0;
  int key_frame_insert = 0;
  uint64_t psnr_sse_total[NUM_ENCODERS] = { 0 };
  uint64_t psnr_samples_total[NUM_ENCODERS] = { 0 };
  double psnr_totals[NUM_ENCODERS][4] = { { 0, 0 } };
  int psnr_count[NUM_ENCODERS] = { 0 };

  int64_t cx_time = 0;

  /* Set the required target bitrates for each resolution level.
   * If target bitrate for highest-resolution level is set to 0,
   * (i.e. target_bitrate[0]=0), we skip encoding at that level.
   */
  unsigned int target_bitrate[NUM_ENCODERS] = { 1000, 500, 100 };

  /* Enter the frame rate of the input video */
  int framerate = 30;

  /* Set down-sampling factor for each resolution level.
     dsf[0] controls down sampling from level 0 to level 1;
     dsf[1] controls down sampling from level 1 to level 2;
     dsf[2] is not used. */
  vpx_rational_t dsf[NUM_ENCODERS] = { { 2, 1 }, { 2, 1 }, { 1, 1 } };

  /* Set the number of temporal layers for each encoder/resolution level,
   * starting from highest resoln down to lowest resoln. */
  unsigned int num_temporal_layers[NUM_ENCODERS] = { 3, 3, 3 };

  if (argc != (7 + 3 * NUM_ENCODERS))
    die("Usage: %s <width> <height> <frame_rate>  <infile> <outfile(s)> "
        "<rate_encoder(s)> <temporal_layer(s)> <key_frame_insert> <output "
        "psnr?> \n",
        argv[0]);

  printf("Using %s\n", vpx_codec_iface_name(interface));

  width = strtol(argv[1], NULL, 0);
  height = strtol(argv[2], NULL, 0);
  framerate = strtol(argv[3], NULL, 0);

  if (width < 16 || width % 2 || height < 16 || height % 2)
    die("Invalid resolution: %ldx%ld", width, height);

  /* Open input video file for encoding */
  if (!(infile = fopen(argv[4], "rb")))
    die("Failed to open %s for reading", argv[4]);

  /* Open output file for each encoder to output bitstreams */
  for (i = 0; i < NUM_ENCODERS; i++) {
    if (!target_bitrate[i]) {
      outfile[i] = NULL;
      continue;
    }

    if (!(outfile[i] = fopen(argv[i + 5], "wb")))
      die("Failed to open %s for writing", argv[i + 4]);
  }

  // Bitrates per spatial layer: overwrite default rates above.
  for (i = 0; i < NUM_ENCODERS; i++) {
    target_bitrate[i] = strtol(argv[NUM_ENCODERS + 5 + i], NULL, 0);
  }

  // Temporal layers per spatial layers: overwrite default settings above.
  for (i = 0; i < NUM_ENCODERS; i++) {
    num_temporal_layers[i] = strtol(argv[2 * NUM_ENCODERS + 5 + i], NULL, 0);
    if (num_temporal_layers[i] < 1 || num_temporal_layers[i] > 3)
      die("Invalid temporal layers: %d, Must be 1, 2, or 3. \n",
          num_temporal_layers);
  }

  /* Open file to write out each spatially downsampled input stream. */
  for (i = 0; i < NUM_ENCODERS - 1; i++) {
    // Highest resoln is encoder 0.
    if (sprintf(filename, "ds%d.yuv", NUM_ENCODERS - i) < 0) {
      return EXIT_FAILURE;
    }
    downsampled_input[i] = fopen(filename, "wb");
  }

  key_frame_insert = strtol(argv[3 * NUM_ENCODERS + 5], NULL, 0);

  show_psnr = strtol(argv[3 * NUM_ENCODERS + 6], NULL, 0);

  /* Populate default encoder configuration */
  for (i = 0; i < NUM_ENCODERS; i++) {
    res[i] = vpx_codec_enc_config_default(interface, &cfg[i], 0);
    if (res[i]) {
      printf("Failed to get config: %s\n", vpx_codec_err_to_string(res[i]));
      return EXIT_FAILURE;
    }
  }

  /*
   * Update the default configuration according to needs of the application.
   */
  /* Highest-resolution encoder settings */
  cfg[0].g_w = width;
  cfg[0].g_h = height;
  cfg[0].rc_dropframe_thresh = 0;
  cfg[0].rc_end_usage = VPX_CBR;
  cfg[0].rc_resize_allowed = 0;
  cfg[0].rc_min_quantizer = 2;
  cfg[0].rc_max_quantizer = 56;
  cfg[0].rc_undershoot_pct = 100;
  cfg[0].rc_overshoot_pct = 15;
  cfg[0].rc_buf_initial_sz = 500;
  cfg[0].rc_buf_optimal_sz = 600;
  cfg[0].rc_buf_sz = 1000;
  cfg[0].g_error_resilient = 1; /* Enable error resilient mode */
  cfg[0].g_lag_in_frames = 0;

  /* Disable automatic keyframe placement */
  /* Note: These 3 settings are copied to all levels. But, except the lowest
   * resolution level, all other levels are set to VPX_KF_DISABLED internally.
   */
  cfg[0].kf_mode = VPX_KF_AUTO;
  cfg[0].kf_min_dist = 3000;
  cfg[0].kf_max_dist = 3000;

  cfg[0].rc_target_bitrate = target_bitrate[0]; /* Set target bitrate */
  cfg[0].g_timebase.num = 1;                    /* Set fps */
  cfg[0].g_timebase.den = framerate;

  /* Other-resolution encoder settings */
  for (i = 1; i < NUM_ENCODERS; i++) {
    memcpy(&cfg[i], &cfg[0], sizeof(vpx_codec_enc_cfg_t));

    cfg[i].rc_target_bitrate = target_bitrate[i];

    /* Note: Width & height of other-resolution encoders are calculated
     * from the highest-resolution encoder's size and the corresponding
     * down_sampling_factor.
     */
    {
      unsigned int iw = cfg[i - 1].g_w * dsf[i - 1].den + dsf[i - 1].num - 1;
      unsigned int ih = cfg[i - 1].g_h * dsf[i - 1].den + dsf[i - 1].num - 1;
      cfg[i].g_w = iw / dsf[i - 1].num;
      cfg[i].g_h = ih / dsf[i - 1].num;
    }

    /* Make width & height to be multiplier of 2. */
    // Should support odd size ???
    if ((cfg[i].g_w) % 2) cfg[i].g_w++;
    if ((cfg[i].g_h) % 2) cfg[i].g_h++;
  }

  // Set the number of threads per encode/spatial layer.
  // (1, 1, 1) means no encoder threading.
  cfg[0].g_threads = 1;
  cfg[1].g_threads = 1;
  cfg[2].g_threads = 1;

  /* Allocate image for each encoder */
  for (i = 0; i < NUM_ENCODERS; i++)
    if (!vpx_img_alloc(&raw[i], VPX_IMG_FMT_I420, cfg[i].g_w, cfg[i].g_h, 32))
      die("Failed to allocate image", cfg[i].g_w, cfg[i].g_h);

  if (raw[0].stride[VPX_PLANE_Y] == raw[0].d_w)
    read_frame_p = read_frame;
  else
    read_frame_p = read_frame_by_row;

  for (i = 0; i < NUM_ENCODERS; i++)
    if (outfile[i]) write_ivf_file_header(outfile[i], &cfg[i], 0);

  /* Temporal layers settings */
  for (i = 0; i < NUM_ENCODERS; i++) {
    set_temporal_layer_pattern(num_temporal_layers[i], &cfg[i],
                               cfg[i].rc_target_bitrate,
                               &layer_flags[i * VPX_TS_MAX_PERIODICITY]);
  }

  /* Initialize multi-encoder */
  if (vpx_codec_enc_init_multi(&codec[0], interface, &cfg[0], NUM_ENCODERS,
                               (show_psnr ? VPX_CODEC_USE_PSNR : 0), &dsf[0]))
    die_codec(&codec[0], "Failed to initialize encoder");

  /* The extra encoding configuration parameters can be set as follows. */
  /* Set encoding speed */
  for (i = 0; i < NUM_ENCODERS; i++) {
    int speed = -6;
    /* Lower speed for the lowest resolution. */
    if (i == NUM_ENCODERS - 1) speed = -4;
    if (vpx_codec_control(&codec[i], VP8E_SET_CPUUSED, speed))
      die_codec(&codec[i], "Failed to set cpu_used");
  }

  /* Set static threshold = 1 for all encoders */
  for (i = 0; i < NUM_ENCODERS; i++) {
    if (vpx_codec_control(&codec[i], VP8E_SET_STATIC_THRESHOLD, 1))
      die_codec(&codec[i], "Failed to set static threshold");
  }

  /* Set NOISE_SENSITIVITY to do TEMPORAL_DENOISING */
  /* Enable denoising for the highest-resolution encoder. */
  if (vpx_codec_control(&codec[0], VP8E_SET_NOISE_SENSITIVITY, 1))
    die_codec(&codec[0], "Failed to set noise_sensitivity");
  if (vpx_codec_control(&codec[1], VP8E_SET_NOISE_SENSITIVITY, 1))
    die_codec(&codec[1], "Failed to set noise_sensitivity");
  for (i = 2; i < NUM_ENCODERS; i++) {
    if (vpx_codec_control(&codec[i], VP8E_SET_NOISE_SENSITIVITY, 0))
      die_codec(&codec[i], "Failed to set noise_sensitivity");
  }

  /* Set the number of token partitions */
  for (i = 0; i < NUM_ENCODERS; i++) {
    if (vpx_codec_control(&codec[i], VP8E_SET_TOKEN_PARTITIONS, 1))
      die_codec(&codec[i], "Failed to set static threshold");
  }

  /* Set the max intra target bitrate */
  for (i = 0; i < NUM_ENCODERS; i++) {
    unsigned int max_intra_size_pct =
        (int)(((double)cfg[0].rc_buf_optimal_sz * 0.5) * framerate / 10);
    if (vpx_codec_control(&codec[i], VP8E_SET_MAX_INTRA_BITRATE_PCT,
                          max_intra_size_pct))
      die_codec(&codec[i], "Failed to set static threshold");
    // printf("%d %d \n",i,max_intra_size_pct);
  }

  frame_avail = 1;
  got_data = 0;

  while (frame_avail || got_data) {
    struct vpx_usec_timer timer;
    vpx_codec_iter_t iter[NUM_ENCODERS] = { NULL };
    const vpx_codec_cx_pkt_t *pkt[NUM_ENCODERS];

    flags = 0;
    frame_avail = read_frame_p(infile, &raw[0]);

    if (frame_avail) {
      for (i = 1; i < NUM_ENCODERS; i++) {
        /*Scale the image down a number of times by downsampling factor*/
        /* FilterMode 1 or 2 give better psnr than FilterMode 0. */
        I420Scale(
            raw[i - 1].planes[VPX_PLANE_Y], raw[i - 1].stride[VPX_PLANE_Y],
            raw[i - 1].planes[VPX_PLANE_U], raw[i - 1].stride[VPX_PLANE_U],
            raw[i - 1].planes[VPX_PLANE_V], raw[i - 1].stride[VPX_PLANE_V],
            raw[i - 1].d_w, raw[i - 1].d_h, raw[i].planes[VPX_PLANE_Y],
            raw[i].stride[VPX_PLANE_Y], raw[i].planes[VPX_PLANE_U],
            raw[i].stride[VPX_PLANE_U], raw[i].planes[VPX_PLANE_V],
            raw[i].stride[VPX_PLANE_V], raw[i].d_w, raw[i].d_h, 1);
        /* Write out down-sampled input. */
        length_frame = cfg[i].g_w * cfg[i].g_h * 3 / 2;
        if (fwrite(raw[i].planes[0], 1, length_frame,
                   downsampled_input[NUM_ENCODERS - i - 1]) != length_frame) {
          return EXIT_FAILURE;
        }
      }
    }

    /* Set the flags (reference and update) for all the encoders.*/
    for (i = 0; i < NUM_ENCODERS; i++) {
      layer_id = cfg[i].ts_layer_id[frame_cnt % cfg[i].ts_periodicity];
      flags = 0;
      flag_periodicity = periodicity_to_num_layers[num_temporal_layers[i] - 1];
      flags = layer_flags[i * VPX_TS_MAX_PERIODICITY +
                          frame_cnt % flag_periodicity];
      // Key frame flag for first frame.
      if (frame_cnt == 0) {
        flags |= VPX_EFLAG_FORCE_KF;
      }
      if (frame_cnt > 0 && frame_cnt == key_frame_insert) {
        flags = VPX_EFLAG_FORCE_KF;
      }

      vpx_codec_control(&codec[i], VP8E_SET_FRAME_FLAGS, flags);
      vpx_codec_control(&codec[i], VP8E_SET_TEMPORAL_LAYER_ID, layer_id);
    }

    /* Encode each frame at multi-levels */
    /* Note the flags must be set to 0 in the encode call if they are set
       for each frame with the vpx_codec_control(), as done above. */
    vpx_usec_timer_start(&timer);
    if (vpx_codec_encode(&codec[0], frame_avail ? &raw[0] : NULL, frame_cnt, 1,
                         0, arg_deadline)) {
      die_codec(&codec[0], "Failed to encode frame");
    }
    vpx_usec_timer_mark(&timer);
    cx_time += vpx_usec_timer_elapsed(&timer);

    for (i = NUM_ENCODERS - 1; i >= 0; i--) {
      got_data = 0;
      while ((pkt[i] = vpx_codec_get_cx_data(&codec[i], &iter[i]))) {
        got_data = 1;
        switch (pkt[i]->kind) {
          case VPX_CODEC_CX_FRAME_PKT:
            write_ivf_frame_header(outfile[i], pkt[i]);
            (void)fwrite(pkt[i]->data.frame.buf, 1, pkt[i]->data.frame.sz,
                         outfile[i]);
            break;
          case VPX_CODEC_PSNR_PKT:
            if (show_psnr) {
              int j;

              psnr_sse_total[i] += pkt[i]->data.psnr.sse[0];
              psnr_samples_total[i] += pkt[i]->data.psnr.samples[0];
              for (j = 0; j < 4; j++) {
                psnr_totals[i][j] += pkt[i]->data.psnr.psnr[j];
              }
              psnr_count[i]++;
            }

            break;
          default: break;
        }
        printf(pkt[i]->kind == VPX_CODEC_CX_FRAME_PKT &&
                       (pkt[i]->data.frame.flags & VPX_FRAME_IS_KEY)
                   ? "K"
                   : "");
        fflush(stdout);
      }
    }
    frame_cnt++;
  }
  printf("\n");
  printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
         frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
         1000000 * (double)frame_cnt / (double)cx_time);

  fclose(infile);

  printf("Processed %ld frames.\n", (long int)frame_cnt - 1);
  for (i = 0; i < NUM_ENCODERS; i++) {
    /* Calculate PSNR and print it out */
    if ((show_psnr) && (psnr_count[i] > 0)) {
      int j;
      double ovpsnr =
          sse_to_psnr(psnr_samples_total[i], 255.0, psnr_sse_total[i]);

      fprintf(stderr, "\n ENC%d PSNR (Overall/Avg/Y/U/V)", i);

      fprintf(stderr, " %.3lf", ovpsnr);
      for (j = 0; j < 4; j++) {
        fprintf(stderr, " %.3lf", psnr_totals[i][j] / psnr_count[i]);
      }
    }

    if (vpx_codec_destroy(&codec[i]))
      die_codec(&codec[i], "Failed to destroy codec");

    vpx_img_free(&raw[i]);

    if (!outfile[i]) continue;

    /* Try to rewrite the file header with the actual frame count */
    if (!fseek(outfile[i], 0, SEEK_SET))
      write_ivf_file_header(outfile[i], &cfg[i], frame_cnt - 1);
    fclose(outfile[i]);
  }
  printf("\n");

  return EXIT_SUCCESS;
}