DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d38398e5144e)

VCS Links

IterationAction

IterationEndReason

TileIterator

TileRange

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "TiledRegion.h"

#include <algorithm>

#include "mozilla/fallible.h"

namespace mozilla {
namespace gfx {

static const int32_t kTileSize = 256;
static const size_t kMaxTiles = 1000;

/**
 * TiledRegionImpl stores an array of non-empty rectangles (pixman_box32_ts) to
 * represent the region. Each rectangle is contained in a single tile;
 * rectangles never cross tile boundaries. The rectangles are sorted by their
 * tile's origin in top-to-bottom, left-to-right order.
 * (Note that this can mean that a rectangle r1 can come before another
 * rectangle r2 even if r2.y1 < r1.y1, as long as the two rects are in the same
 * row of tiles and r1.x1 < r2.x1.)
 * Empty tiles take up no space in the array - there is no rectangle stored for
 * them. As a result, any algorithm that needs to deal with empty tiles will
 * iterate through the mRects array and compare the positions of two
 * consecutive rects to figure out whether there are any empty tiles between
 * them.
 */

static pixman_box32_t
IntersectionOfNonEmptyBoxes(const pixman_box32_t& aBox1,
                            const pixman_box32_t& aBox2)
{
  return pixman_box32_t {
    std::max(aBox1.x1, aBox2.x1),
    std::max(aBox1.y1, aBox2.y1),
    std::min(aBox1.x2, aBox2.x2),
    std::min(aBox1.y2, aBox2.y2)
  };
}

// A TileIterator points to a specific tile inside a certain tile range, or to
// the end of the tile range. Advancing a TileIterator will move to the next
// tile inside the range (or to the range end). The next tile is either the
// tile to the right of the current one, or the first tile of the next tile
// row if the current tile is already the last tile in the row.
class TileIterator {
public:
  TileIterator(const pixman_box32_t& aTileBounds, const IntPoint& aPosition)
    : mTileBounds(aTileBounds)
    , mPos(aPosition)
  {}

  bool operator!=(const TileIterator& aOther) { return mPos != aOther.mPos; }
  bool operator==(const TileIterator& aOther) { return mPos == aOther.mPos; }

  IntPoint operator*() const { return mPos; }

  const TileIterator& operator++() {
    mPos.x += kTileSize;
    if (mPos.x >= mTileBounds.x2) {
      mPos.x = mTileBounds.x1;
      mPos.y += kTileSize;
    }
    return *this;
  }

  TileIterator& operator=(const IntPoint& aPosition)
  {
    mPos = aPosition;
    return *this;
  }

  bool IsBeforeTileContainingPoint(const IntPoint& aPoint) const
  {
    return (mPos.y + kTileSize) <= aPoint.y  ||
      (mPos.y <= aPoint.y && (mPos.x + kTileSize) <= aPoint.x);
  }

  bool IsAtTileContainingPoint(const IntPoint& aPoint) const
  {
    return mPos.y <= aPoint.y && aPoint.y < (mPos.y + kTileSize) &&
           mPos.x <= aPoint.x && aPoint.x < (mPos.x + kTileSize);

  }

  pixman_box32_t IntersectionWith(const pixman_box32_t& aRect) const
  {
    pixman_box32_t tile = { mPos.x, mPos.y,
                            mPos.x + kTileSize, mPos.y + kTileSize };
    return IntersectionOfNonEmptyBoxes(tile, aRect);
  }

private:
  const pixman_box32_t& mTileBounds;
  IntPoint mPos;
};

// A TileRange describes a range of tiles contained inside a certain tile
// bounds (which is a rectangle that includes all tiles that you're
// interested in). The tile range can start and end at any point inside a
// tile row.
// The tile range end is described by the tile that starts at the bottom
// left corner of the tile bounds, i.e. the first tile under the tile
// bounds.
class TileRange {
public:
  // aTileBounds, aStart and aEnd need to be aligned with the tile grid.
  TileRange(const pixman_box32_t& aTileBounds,
            const IntPoint& aStart, const IntPoint& aEnd)
    : mTileBounds(aTileBounds)
    , mStart(aStart)
    , mEnd(aEnd)
  {}
  // aTileBounds needs to be aligned with the tile grid.
  explicit TileRange(const pixman_box32_t& aTileBounds)
    : mTileBounds(aTileBounds)
    , mStart(mTileBounds.x1, mTileBounds.y1)
    , mEnd(mTileBounds.x1, mTileBounds.y2)
  {}

  TileIterator Begin() const { return TileIterator(mTileBounds, mStart); }
  TileIterator End() const { return TileIterator(mTileBounds, mEnd); }

  // The number of tiles in this tile range.
  size_t Length() const
  {
    if (mEnd.y == mStart.y) {
      return (mEnd.x - mStart.x) / kTileSize;
    }
    int64_t numberOfFullRows = (((int64_t)mEnd.y - (int64_t)mStart.y) / kTileSize) - 1;
    int64_t tilesInFirstRow = ((int64_t)mTileBounds.x2 - (int64_t)mStart.x) / kTileSize;
    int64_t tilesInLastRow = ((int64_t)mEnd.x - (int64_t)mTileBounds.x1) / kTileSize;
    int64_t tilesInFullRow = ((int64_t)mTileBounds.x2 - (int64_t)mTileBounds.x1) / kTileSize;
    int64_t total = tilesInFirstRow + (tilesInFullRow * numberOfFullRows) + tilesInLastRow;
    MOZ_ASSERT(total > 0);
    // The total may be larger than what fits in a size_t, so clamp it to
    // SIZE_MAX in that case.
    return ((uint64_t)total > (uint64_t)SIZE_MAX) ? SIZE_MAX : (size_t)total;
  }

  // If aTileOrigin does not describe a tile inside our tile bounds, move it
  // to the next tile that you'd encounter by "advancing" a tile iterator
  // inside these tile bounds. If aTileOrigin is after the last tile inside
  // our tile bounds, move it to the range end tile.
  // The result of this method is a valid end tile for a tile range with our
  // tile bounds.
  IntPoint MoveIntoBounds(const IntPoint& aTileOrigin) const
  {
    IntPoint p = aTileOrigin;
    if (p.x < mTileBounds.x1) {
      p.x = mTileBounds.x1;
    } else if (p.x >= mTileBounds.x2) {
      p.x = mTileBounds.x1;
      p.y += kTileSize;
    }
    if (p.y < mTileBounds.y1) {
      p.y = mTileBounds.y1;
      p.x = mTileBounds.x1;
    } else if (p.y >= mTileBounds.y2) {
      // There's only one valid state after the end of the tile range, and that's
      // the bottom left point of the tile bounds.
      p.x = mTileBounds.x1;
      p.y = mTileBounds.y2;
    }
    return p;
  }

private:
  const pixman_box32_t& mTileBounds;
  const IntPoint mStart;
  const IntPoint mEnd;
};

static IntPoint
TileContainingPoint(const IntPoint& aPoint)
{
  return IntPoint(RoundDownToMultiple(aPoint.x, kTileSize),
                  RoundDownToMultiple(aPoint.y, kTileSize));
}

enum class IterationAction : uint8_t {
  CONTINUE,
  STOP
};

enum class IterationEndReason : uint8_t {
  NOT_STOPPED,
  STOPPED
};

template<
  typename HandleEmptyTilesFunction,
  typename HandleNonEmptyTileFunction,
  typename RectArrayT>
IterationEndReason ProcessIntersectedTiles(const pixman_box32_t& aRect,
                                           RectArrayT& aRectArray,
                                           HandleEmptyTilesFunction aHandleEmptyTiles,
                                           HandleNonEmptyTileFunction aHandleNonEmptyTile)
{
  pixman_box32_t tileBounds = {
    RoundDownToMultiple(aRect.x1, kTileSize),
    RoundDownToMultiple(aRect.y1, kTileSize),
    RoundUpToMultiple(aRect.x2, kTileSize),
    RoundUpToMultiple(aRect.y2, kTileSize)
  };
  if (tileBounds.x2 < tileBounds.x1 || tileBounds.y2 < tileBounds.y1) {
    // RoundUpToMultiple probably overflowed. Bail out.
    return IterationEndReason::STOPPED;
  }

  TileRange tileRange(tileBounds);
  TileIterator rangeEnd = tileRange.End();

  // tileIterator points to the next tile in tileRange, or to rangeEnd if we're
  // done.
  TileIterator tileIterator = tileRange.Begin();

  // We iterate over the rectangle array. Depending on the position of the
  // rectangle we encounter, we may need to advance tileIterator by zero, one,
  // or more tiles:
  //  - Zero if the rectangle we encountered is outside the tiles that
  //    intersect aRect.
  //  - One if the rectangle is in the exact tile that we're interested in next
  //    (i.e. the tile that tileIterator points at).
  //  - More than one if the encountered rectangle is in a tile that's further
  //    to the right or to the bottom than tileIterator. In that case there is
  //    at least one empty tile between the last rectangle we encountered and
  //    the current one.
  for (size_t i = 0; i < aRectArray.Length() && tileIterator != rangeEnd; i++) {
    MOZ_ASSERT(aRectArray[i].x1 < aRectArray[i].x2 && aRectArray[i].y1 < aRectArray[i].y2, "empty rect");
    IntPoint rectOrigin(aRectArray[i].x1, aRectArray[i].y1);
    if (tileIterator.IsBeforeTileContainingPoint(rectOrigin)) {
      IntPoint tileOrigin = TileContainingPoint(rectOrigin);
      IntPoint afterEmptyTiles = tileRange.MoveIntoBounds(tileOrigin);
      TileRange emptyTiles(tileBounds, *tileIterator, afterEmptyTiles);
      if (aHandleEmptyTiles(aRectArray, i, emptyTiles) == IterationAction::STOP) {
        return IterationEndReason::STOPPED;
      }
      tileIterator = afterEmptyTiles;
      if (tileIterator == rangeEnd) {
        return IterationEndReason::NOT_STOPPED;
      }
    }
    if (tileIterator.IsAtTileContainingPoint(rectOrigin)) {
      pixman_box32_t rectIntersection = tileIterator.IntersectionWith(aRect);
      if (aHandleNonEmptyTile(aRectArray, i, rectIntersection) == IterationAction::STOP) {
        return IterationEndReason::STOPPED;
      }
      ++tileIterator;
    }
  }

  if (tileIterator != rangeEnd) {
    // We've looked at all of our existing rectangles but haven't covered all
    // of the tiles that we're interested in yet. So we need to deal with the
    // remaining tiles now.
    size_t endIndex = aRectArray.Length();
    TileRange emptyTiles(tileBounds, *tileIterator, *rangeEnd);
    if (aHandleEmptyTiles(aRectArray, endIndex, emptyTiles) == IterationAction::STOP) {
      return IterationEndReason::STOPPED;
    }
  }
  return IterationEndReason::NOT_STOPPED;
}

static pixman_box32_t
UnionBoundsOfNonEmptyBoxes(const pixman_box32_t& aBox1,
                           const pixman_box32_t& aBox2)
{
  return { std::min(aBox1.x1, aBox2.x1),
           std::min(aBox1.y1, aBox2.y1),
           std::max(aBox1.x2, aBox2.x2),
           std::max(aBox1.y2, aBox2.y2) };
}

// Returns true when adding the rectangle was successful, and false if
// allocation failed.
// When this returns false, our internal state might not be consistent and we
// need to be cleared.
bool
TiledRegionImpl::AddRect(const pixman_box32_t& aRect)
{
  // We are adding a rectangle that can span multiple tiles.
  // For each empty tile that aRect intersects, we need to add the intersection
  // of aRect with that tile to mRects, respecting the order of mRects.
  // For each tile that already has a rectangle, we need to enlarge that
  // existing rectangle to include the intersection of aRect with the tile.
  return ProcessIntersectedTiles(aRect, mRects,
    [&aRect](nsTArray<pixman_box32_t>& rects, size_t& rectIndex, TileRange emptyTiles) {
      CheckedInt<size_t> newLength(rects.Length());
      newLength += emptyTiles.Length();
      if (!newLength.isValid() || newLength.value() >= kMaxTiles ||
          !rects.InsertElementsAt(rectIndex, emptyTiles.Length(), fallible)) {
        return IterationAction::STOP;
      }
      for (TileIterator tileIt = emptyTiles.Begin();
           tileIt != emptyTiles.End();
           ++tileIt, ++rectIndex) {
        rects[rectIndex] = tileIt.IntersectionWith(aRect);
      }
      return IterationAction::CONTINUE;
    },
    [](nsTArray<pixman_box32_t>& rects, size_t rectIndex, const pixman_box32_t& rectIntersectionWithTile) {
      rects[rectIndex] =
        UnionBoundsOfNonEmptyBoxes(rects[rectIndex], rectIntersectionWithTile);
      return IterationAction::CONTINUE;
    }) == IterationEndReason::NOT_STOPPED;
}

static bool
NonEmptyBoxesIntersect(const pixman_box32_t& aBox1, const pixman_box32_t& aBox2)
{
  return aBox1.x1 < aBox2.x2 && aBox2.x1 < aBox1.x2 &&
         aBox1.y1 < aBox2.y2 && aBox2.y1 < aBox1.y2;
}

bool
TiledRegionImpl::Intersects(const pixman_box32_t& aRect) const
{
  // aRect intersects this region if it intersects any of our rectangles.
  return ProcessIntersectedTiles(aRect, mRects,
    [](const nsTArray<pixman_box32_t>& rects, size_t& rectIndex, TileRange emptyTiles) {
      // Ignore empty tiles and keep on iterating.
      return IterationAction::CONTINUE;
    },
    [](const nsTArray<pixman_box32_t>& rects, size_t rectIndex, const pixman_box32_t& rectIntersectionWithTile) {
      if (NonEmptyBoxesIntersect(rects[rectIndex], rectIntersectionWithTile)) {
        // Found an intersecting rectangle, so aRect intersects this region.
        return IterationAction::STOP;
      }
      return IterationAction::CONTINUE;
    }) == IterationEndReason::STOPPED;
}

static bool
NonEmptyBoxContainsNonEmptyBox(const pixman_box32_t& aBox1, const pixman_box32_t& aBox2)
{
  return aBox1.x1 <= aBox2.x1 && aBox2.x2 <= aBox1.x2 &&
         aBox1.y1 <= aBox2.y1 && aBox2.y2 <= aBox1.y2;
}

bool
TiledRegionImpl::Contains(const pixman_box32_t& aRect) const
{
  // aRect is contained in this region if aRect does not intersect any empty
  // tiles and, for each non-empty tile, if the intersection of aRect with that
  // tile is contained in the existing rectangle we have in that tile.
  return ProcessIntersectedTiles(aRect, mRects,
    [](const nsTArray<pixman_box32_t>& rects, size_t& rectIndex, TileRange emptyTiles) {
      // Found an empty tile that intersects aRect, so aRect is not contained
      // in this region.
      return IterationAction::STOP;
    },
    [](const nsTArray<pixman_box32_t>& rects, size_t rectIndex, const pixman_box32_t& rectIntersectionWithTile) {
      if (!NonEmptyBoxContainsNonEmptyBox(rects[rectIndex], rectIntersectionWithTile)) {
        // Our existing rectangle in this tile does not cover the part of aRect that
        // intersects this tile, so aRect is not contained in this region.
        return IterationAction::STOP;
      }
      return IterationAction::CONTINUE;
    }) == IterationEndReason::NOT_STOPPED;
}

} // namespace gfx
} // namespace mozilla