DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (d38398e5144e)

VCS Links

AudioNodeEngine

Storage

ThreadSharedFloatArrayBufferList

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_AUDIONODEENGINE_H_
#define MOZILLA_AUDIONODEENGINE_H_

#include "AudioSegment.h"
#include "mozilla/dom/AudioNode.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Mutex.h"

namespace mozilla {

namespace dom {
struct ThreeDPoint;
class AudioParamTimeline;
class DelayNodeEngine;
struct AudioTimelineEvent;
} // namespace dom

class AbstractThread;
class AudioBlock;
class AudioNodeStream;

/**
 * This class holds onto a set of immutable channel buffers. The storage
 * for the buffers must be malloced, but the buffer pointers and the malloc
 * pointers can be different (e.g. if the buffers are contained inside
 * some malloced object).
 */
class ThreadSharedFloatArrayBufferList final : public ThreadSharedObject
{
public:
  /**
   * Construct with null channel data pointers.
   */
  explicit ThreadSharedFloatArrayBufferList(uint32_t aCount)
  {
    mContents.SetLength(aCount);
  }
  /**
   * Create with buffers suitable for transfer to
   * JS_NewArrayBufferWithContents().  The buffer contents are uninitialized
   * and so should be set using GetDataForWrite().
   */
  static already_AddRefed<ThreadSharedFloatArrayBufferList>
  Create(uint32_t aChannelCount, size_t aLength, const mozilla::fallible_t&);

  struct Storage final
  {
    Storage() :
      mDataToFree(nullptr),
      mFree(nullptr),
      mSampleData(nullptr)
    {}
    ~Storage() {
      if (mFree) {
        mFree(mDataToFree);
      } else { MOZ_ASSERT(!mDataToFree); }
    }
    size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
    {
      // NB: mSampleData might not be owned, if it is it just points to
      //     mDataToFree.
      return aMallocSizeOf(mDataToFree);
    }
    void* mDataToFree;
    void (*mFree)(void*);
    float* mSampleData;
  };

  /**
   * This can be called on any thread.
   */
  uint32_t GetChannels() const { return mContents.Length(); }
  /**
   * This can be called on any thread.
   */
  const float* GetData(uint32_t aIndex) const { return mContents[aIndex].mSampleData; }
  /**
   * This can be called on any thread, but only when the calling thread is the
   * only owner.
   */
  float* GetDataForWrite(uint32_t aIndex)
  {
    MOZ_ASSERT(!IsShared());
    return mContents[aIndex].mSampleData;
  }

  /**
   * Call this only during initialization, before the object is handed to
   * any other thread.
   */
  void SetData(uint32_t aIndex, void* aDataToFree, void (*aFreeFunc)(void*), float* aData)
  {
    Storage* s = &mContents[aIndex];
    if (s->mFree) {
      s->mFree(s->mDataToFree);
    } else {
      MOZ_ASSERT(!s->mDataToFree);
    }

    s->mDataToFree = aDataToFree;
    s->mFree = aFreeFunc;
    s->mSampleData = aData;
  }

  /**
   * Put this object into an error state where there are no channels.
   */
  void Clear() { mContents.Clear(); }

  size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const override
  {
    size_t amount = ThreadSharedObject::SizeOfExcludingThis(aMallocSizeOf);
    amount += mContents.ShallowSizeOfExcludingThis(aMallocSizeOf);
    for (size_t i = 0; i < mContents.Length(); i++) {
      amount += mContents[i].SizeOfExcludingThis(aMallocSizeOf);
    }

    return amount;
  }

  size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override
  {
    return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
  }

private:
  AutoTArray<Storage, 2> mContents;
};

/**
 * aChunk must have been allocated by AllocateAudioBlock.
 */
void WriteZeroesToAudioBlock(AudioBlock* aChunk, uint32_t aStart,
                             uint32_t aLength);

/**
 * Copy with scale. aScale == 1.0f should be optimized.
 */
void AudioBufferCopyWithScale(const float* aInput,
                              float aScale,
                              float* aOutput,
                              uint32_t aSize);

/**
 * Pointwise multiply-add operation. aScale == 1.0f should be optimized.
 */
void AudioBufferAddWithScale(const float* aInput,
                             float aScale,
                             float* aOutput,
                             uint32_t aSize);

/**
 * Pointwise multiply-add operation. aScale == 1.0f should be optimized.
 */
void AudioBlockAddChannelWithScale(const float aInput[WEBAUDIO_BLOCK_SIZE],
                                   float aScale,
                                   float aOutput[WEBAUDIO_BLOCK_SIZE]);

/**
 * Pointwise copy-scaled operation. aScale == 1.0f should be optimized.
 *
 * Buffer size is implicitly assumed to be WEBAUDIO_BLOCK_SIZE.
 */
void AudioBlockCopyChannelWithScale(const float* aInput,
                                    float aScale,
                                    float* aOutput);

/**
 * Vector copy-scaled operation.
 */
void AudioBlockCopyChannelWithScale(const float aInput[WEBAUDIO_BLOCK_SIZE],
                                    const float aScale[WEBAUDIO_BLOCK_SIZE],
                                    float aOutput[WEBAUDIO_BLOCK_SIZE]);

/**
 * Vector complex multiplication on arbitrary sized buffers.
 */
void BufferComplexMultiply(const float* aInput,
                           const float* aScale,
                           float* aOutput,
                           uint32_t aSize);

/**
 * Vector maximum element magnitude ( max(abs(aInput)) ).
 */
float AudioBufferPeakValue(const float* aInput, uint32_t aSize);

/**
 * In place gain. aScale == 1.0f should be optimized.
 */
void AudioBlockInPlaceScale(float aBlock[WEBAUDIO_BLOCK_SIZE],
                            float aScale);

/**
 * In place gain. aScale == 1.0f should be optimized.
 */
void AudioBufferInPlaceScale(float* aBlock,
                             float aScale,
                             uint32_t aSize);

/**
 * Upmix a mono input to a stereo output, scaling the two output channels by two
 * different gain value.
 * This algorithm is specified in the WebAudio spec.
 */
void
AudioBlockPanMonoToStereo(const float aInput[WEBAUDIO_BLOCK_SIZE],
                          float aGainL, float aGainR,
                          float aOutputL[WEBAUDIO_BLOCK_SIZE],
                          float aOutputR[WEBAUDIO_BLOCK_SIZE]);

void
AudioBlockPanMonoToStereo(const float aInput[WEBAUDIO_BLOCK_SIZE],
                          float aGainL[WEBAUDIO_BLOCK_SIZE],
                          float aGainR[WEBAUDIO_BLOCK_SIZE],
                          float aOutputL[WEBAUDIO_BLOCK_SIZE],
                          float aOutputR[WEBAUDIO_BLOCK_SIZE]);
/**
 * Pan a stereo source according to right and left gain, and the position
 * (whether the listener is on the left of the source or not).
 * This algorithm is specified in the WebAudio spec.
 */
void
AudioBlockPanStereoToStereo(const float aInputL[WEBAUDIO_BLOCK_SIZE],
                            const float aInputR[WEBAUDIO_BLOCK_SIZE],
                            float aGainL, float aGainR, bool aIsOnTheLeft,
                            float aOutputL[WEBAUDIO_BLOCK_SIZE],
                            float aOutputR[WEBAUDIO_BLOCK_SIZE]);
void
AudioBlockPanStereoToStereo(const float aInputL[WEBAUDIO_BLOCK_SIZE],
                            const float aInputR[WEBAUDIO_BLOCK_SIZE],
                            float aGainL[WEBAUDIO_BLOCK_SIZE],
                            float aGainR[WEBAUDIO_BLOCK_SIZE],
                            bool  aIsOnTheLeft[WEBAUDIO_BLOCK_SIZE],
                            float aOutputL[WEBAUDIO_BLOCK_SIZE],
                            float aOutputR[WEBAUDIO_BLOCK_SIZE]);

/**
 * Return the sum of squares of all of the samples in the input.
 */
float
AudioBufferSumOfSquares(const float* aInput, uint32_t aLength);

/**
 * All methods of this class and its subclasses are called on the
 * MediaStreamGraph thread.
 */
class AudioNodeEngine
{
public:
  // This should be compatible with AudioNodeStream::OutputChunks.
  typedef AutoTArray<AudioBlock, 1> OutputChunks;

  explicit AudioNodeEngine(dom::AudioNode* aNode);

  virtual ~AudioNodeEngine()
  {
    MOZ_ASSERT(!mNode, "The node reference must be already cleared");
    MOZ_COUNT_DTOR(AudioNodeEngine);
  }

  virtual dom::DelayNodeEngine* AsDelayNodeEngine() { return nullptr; }

  virtual void SetStreamTimeParameter(uint32_t aIndex, StreamTime aParam)
  {
    NS_ERROR("Invalid SetStreamTimeParameter index");
  }
  virtual void SetDoubleParameter(uint32_t aIndex, double aParam)
  {
    NS_ERROR("Invalid SetDoubleParameter index");
  }
  virtual void SetInt32Parameter(uint32_t aIndex, int32_t aParam)
  {
    NS_ERROR("Invalid SetInt32Parameter index");
  }
  virtual void RecvTimelineEvent(uint32_t aIndex,
                                 dom::AudioTimelineEvent& aValue)
  {
    NS_ERROR("Invalid RecvTimelineEvent index");
  }
  virtual void SetThreeDPointParameter(uint32_t aIndex,
                                       const dom::ThreeDPoint& aValue)
  {
    NS_ERROR("Invalid SetThreeDPointParameter index");
  }
  virtual void SetBuffer(already_AddRefed<ThreadSharedFloatArrayBufferList> aBuffer)
  {
    NS_ERROR("SetBuffer called on engine that doesn't support it");
  }
  // This consumes the contents of aData.  aData will be emptied after this returns.
  virtual void SetRawArrayData(nsTArray<float>& aData)
  {
    NS_ERROR("SetRawArrayData called on an engine that doesn't support it");
  }

  /**
   * Produce the next block of audio samples, given input samples aInput
   * (the mixed data for input 0).
   * aInput is guaranteed to have float sample format (if it has samples at all)
   * and to have been resampled to the sampling rate for the stream, and to have
   * exactly WEBAUDIO_BLOCK_SIZE samples.
   * *aFinished is set to false by the caller. The callee must not set this to
   * true unless silent output is produced. If set to true, we'll finish the
   * stream, consider this input inactive on any downstream nodes, and not
   * call this again.
   */
  virtual void ProcessBlock(AudioNodeStream* aStream,
                            GraphTime aFrom,
                            const AudioBlock& aInput,
                            AudioBlock* aOutput,
                            bool* aFinished);
  /**
   * Produce the next block of audio samples, before input is provided.
   * ProcessBlock() will be called later, and it then should not change
   * aOutput.  This is used only for DelayNodeEngine in a feedback loop.
   */
  virtual void ProduceBlockBeforeInput(AudioNodeStream* aStream,
                                       GraphTime aFrom,
                                       AudioBlock* aOutput)
  {
    NS_NOTREACHED("ProduceBlockBeforeInput called on wrong engine\n");
  }

  /**
   * Produce the next block of audio samples, given input samples in the aInput
   * array.  There is one input sample per active port in aInput, in order.
   * This is the multi-input/output version of ProcessBlock.  Only one kind
   * of ProcessBlock is called on each node, depending on whether the
   * number of inputs and outputs are both 1 or not.
   *
   * aInput is always guaranteed to not contain more input AudioChunks than the
   * maximum number of inputs for the node.  It is the responsibility of the
   * overrides of this function to make sure they will only add a maximum number
   * of AudioChunks to aOutput as advertized by the AudioNode implementation.
   * An engine may choose to produce fewer inputs than advertizes by the
   * corresponding AudioNode, in which case it will be interpreted as a channel
   * of silence.
   */
  virtual void ProcessBlocksOnPorts(AudioNodeStream* aStream,
                                    const OutputChunks& aInput,
                                    OutputChunks& aOutput,
                                    bool* aFinished);

  // IsActive() returns true if the engine needs to continue processing an
  // unfinished stream even when it has silent or no input connections.  This
  // includes tail-times and when sources have been scheduled to start.  If
  // returning false, then the stream can be suspended.
  virtual bool IsActive() const { return false; }

  bool HasNode() const
  {
    MOZ_ASSERT(NS_IsMainThread());
    return !!mNode;
  }

  dom::AudioNode* NodeMainThread() const
  {
    MOZ_ASSERT(NS_IsMainThread());
    return mNode;
  }

  void ClearNode()
  {
    MOZ_ASSERT(NS_IsMainThread());
    MOZ_ASSERT(mNode != nullptr);
    mNode = nullptr;
  }

  uint16_t InputCount() const { return mInputCount; }
  uint16_t OutputCount() const { return mOutputCount; }

  virtual size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
  {
    // NB: |mNode| is tracked separately so it is excluded here.
    return 0;
  }

  virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
  {
    return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
  }

  void SizeOfIncludingThis(MallocSizeOf aMallocSizeOf,
                           AudioNodeSizes& aUsage) const
  {
    aUsage.mEngine = SizeOfIncludingThis(aMallocSizeOf);
    aUsage.mNodeType = mNodeType;
  }

private:
  dom::AudioNode* mNode; // main thread only
  const char* const mNodeType;
  const uint16_t mInputCount;
  const uint16_t mOutputCount;

protected:
  const RefPtr<AbstractThread> mAbstractMainThread;
};

} // namespace mozilla

#endif /* MOZILLA_AUDIONODEENGINE_H_ */