DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (3865bf230c49)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
/*
 * jidctint.c
 *
 * Copyright (C) 1991-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a slow-but-accurate integer implementation of the
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 * must also perform dequantization of the input coefficients.
 *
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 * on each row (or vice versa, but it's more convenient to emit a row at
 * a time).  Direct algorithms are also available, but they are much more
 * complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on an algorithm described in
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
 * The primary algorithm described there uses 11 multiplies and 29 adds.
 * We use their alternate method with 12 multiplies and 32 adds.
 * The advantage of this method is that no data path contains more than one
 * multiplication; this allows a very simple and accurate implementation in
 * scaled fixed-point arithmetic, with a minimal number of shifts.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */

#ifdef DCT_ISLOW_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/*
 * The poop on this scaling stuff is as follows:
 *
 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
 * larger than the true IDCT outputs.  The final outputs are therefore
 * a factor of N larger than desired; since N=8 this can be cured by
 * a simple right shift at the end of the algorithm.  The advantage of
 * this arrangement is that we save two multiplications per 1-D IDCT,
 * because the y0 and y4 inputs need not be divided by sqrt(N).
 *
 * We have to do addition and subtraction of the integer inputs, which
 * is no problem, and multiplication by fractional constants, which is
 * a problem to do in integer arithmetic.  We multiply all the constants
 * by CONST_SCALE and convert them to integer constants (thus retaining
 * CONST_BITS bits of precision in the constants).  After doing a
 * multiplication we have to divide the product by CONST_SCALE, with proper
 * rounding, to produce the correct output.  This division can be done
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
 * as long as possible so that partial sums can be added together with
 * full fractional precision.
 *
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
 * they are represented to better-than-integral precision.  These outputs
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
 * with the recommended scaling.  (To scale up 12-bit sample data further, an
 * intermediate INT32 array would be needed.)
 *
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
 * shows that the values given below are the most effective.
 */

#if BITS_IN_JSAMPLE == 8
#define CONST_BITS  13
#define PASS1_BITS  2
#else
#define CONST_BITS  13
#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
#endif

/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 * causing a lot of useless floating-point operations at run time.
 * To get around this we use the following pre-calculated constants.
 * If you change CONST_BITS you may want to add appropriate values.
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 */

#if CONST_BITS == 13
#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
#else
#define FIX_0_298631336  FIX(0.298631336)
#define FIX_0_390180644  FIX(0.390180644)
#define FIX_0_541196100  FIX(0.541196100)
#define FIX_0_765366865  FIX(0.765366865)
#define FIX_0_899976223  FIX(0.899976223)
#define FIX_1_175875602  FIX(1.175875602)
#define FIX_1_501321110  FIX(1.501321110)
#define FIX_1_847759065  FIX(1.847759065)
#define FIX_1_961570560  FIX(1.961570560)
#define FIX_2_053119869  FIX(2.053119869)
#define FIX_2_562915447  FIX(2.562915447)
#define FIX_3_072711026  FIX(3.072711026)
#endif


/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 * For 8-bit samples with the recommended scaling, all the variable
 * and constant values involved are no more than 16 bits wide, so a
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
 * For 12-bit samples, a full 32-bit multiplication will be needed.
 */

#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const)  ((var) * (const))
#endif


/* Dequantize a coefficient by multiplying it by the multiplier-table
 * entry; produce an int result.  In this module, both inputs and result
 * are 16 bits or less, so either int or short multiply will work.
 */

#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))


/*
 * Perform dequantization and inverse DCT on one block of coefficients.
 */

GLOBAL(void)
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
		 JCOEFPTR coef_block,
		 JSAMPARRAY output_buf, JDIMENSION output_col)
{
  INT32 tmp0, tmp1, tmp2, tmp3;
  INT32 tmp10, tmp11, tmp12, tmp13;
  INT32 z1, z2, z3, z4, z5;
  JCOEFPTR inptr;
  ISLOW_MULT_TYPE * quantptr;
  int * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE2];	/* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */
  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  /* furthermore, we scale the results by 2**PASS1_BITS. */

  inptr = coef_block;
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */
    
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
	inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero */
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
      
      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;
      
      inptr++;			/* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }
    
    /* Even part: reverse the even part of the forward DCT. */
    /* The rotator is sqrt(2)*c(-6). */
    
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
    
    z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);

    tmp0 = (z2 + z3) << CONST_BITS;
    tmp1 = (z2 - z3) << CONST_BITS;
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    /* Odd part per figure 8; the matrix is unitary and hence its
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
     */
    
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    
    z1 = tmp0 + tmp3;
    z2 = tmp1 + tmp2;
    z3 = tmp0 + tmp2;
    z4 = tmp1 + tmp3;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    tmp0 += z1 + z3;
    tmp1 += z2 + z4;
    tmp2 += z2 + z3;
    tmp3 += z1 + z4;
    
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
    
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
    
    inptr++;			/* advance pointers to next column */
    quantptr++;
    wsptr++;
  }
  
  /* Pass 2: process rows from work array, store into output array. */
  /* Note that we must descale the results by a factor of 8 == 2**3, */
  /* and also undo the PASS1_BITS scaling. */

  wsptr = workspace;
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* Rows of zeroes can be exploited in the same way as we did with columns.
     * However, the column calculation has created many nonzero AC terms, so
     * the simplification applies less often (typically 5% to 10% of the time).
     * On machines with very fast multiplication, it's possible that the
     * test takes more time than it's worth.  In that case this section
     * may be commented out.
     */
    
#ifndef NO_ZERO_ROW_TEST
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
      /* AC terms all zero */
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
				  & RANGE_MASK];
      
      outptr[0] = dcval;
      outptr[1] = dcval;
      outptr[2] = dcval;
      outptr[3] = dcval;
      outptr[4] = dcval;
      outptr[5] = dcval;
      outptr[6] = dcval;
      outptr[7] = dcval;

      wsptr += DCTSIZE;		/* advance pointer to next row */
      continue;
    }
#endif
    
    /* Even part: reverse the even part of the forward DCT. */
    /* The rotator is sqrt(2)*c(-6). */
    
    z2 = (INT32) wsptr[2];
    z3 = (INT32) wsptr[6];
    
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
    
    tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
    tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    /* Odd part per figure 8; the matrix is unitary and hence its
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
     */
    
    tmp0 = (INT32) wsptr[7];
    tmp1 = (INT32) wsptr[5];
    tmp2 = (INT32) wsptr[3];
    tmp3 = (INT32) wsptr[1];
    
    z1 = tmp0 + tmp3;
    z2 = tmp1 + tmp2;
    z3 = tmp0 + tmp2;
    z4 = tmp1 + tmp3;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    tmp0 += z1 + z3;
    tmp1 += z2 + z4;
    tmp2 += z2 + z3;
    tmp3 += z1 + z4;
    
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
    
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    
    wsptr += DCTSIZE;		/* advance pointer to next row */
  }
}


#ifdef HAVE_SSE2_INTEL_MNEMONICS

/*
* Intel SSE2 optimized Inverse Discrete Cosine Transform
*
*
* Copyright (c) 2001-2002 Intel Corporation
* All Rights Reserved
*
*
*  Authors:
*      Danilov G.
*
*
*-----------------------------------------------------------------------------
*
* References:
*    K.R. Rao and P. Yip
*       Discrete Cosine Transform.
*       Algorithms, Advantages, Applications.
*       Academic Press, Inc, London, 1990.
*    JPEG Group's software.
*       This implementation is based on Appendix A.2 of the book (R&Y) ...
*
*-----------------------------------------------------------------------------
*/

typedef unsigned char   Ipp8u;
typedef unsigned short  Ipp16u;
typedef unsigned int    Ipp32u;

typedef signed char    Ipp8s;
typedef signed short   Ipp16s;
typedef signed int     Ipp32s;

#define BITS_INV_ACC  4			
#define SHIFT_INV_ROW  16 - BITS_INV_ACC
#define SHIFT_INV_COL 1 + BITS_INV_ACC

#define RND_INV_ROW  1024 * (6 - BITS_INV_ACC)	/* 1 << (SHIFT_INV_ROW-1)		*/
#define RND_INV_COL = 16 * (BITS_INV_ACC - 3)   /* 1 << (SHIFT_INV_COL-1)		*/
#define RND_INV_CORR = RND_INV_COL - 1          /* correction -1.0 and round	*/

#define c_inv_corr_0 -1024 * (6 - BITS_INV_ACC) + 65536		/* -0.5 + (16.0 or 32.0)	*/
#define c_inv_corr_1 1877 * (6 - BITS_INV_ACC)				/* 0.9167	*/	
#define c_inv_corr_2 1236 * (6 - BITS_INV_ACC)				/* 0.6035	*/					
#define c_inv_corr_3 680  * (6 - BITS_INV_ACC)				/* 0.3322	*/
#define c_inv_corr_4 0    * (6 - BITS_INV_ACC)				/* 0.0		*/	
#define c_inv_corr_5 -569  * (6 - BITS_INV_ACC)				/* -0.278	*/
#define c_inv_corr_6 -512  * (6 - BITS_INV_ACC)				/* -0.25	*/	
#define c_inv_corr_7 -651  * (6 - BITS_INV_ACC)				/* -0.3176	*/	

#define RND_INV_ROW_0 RND_INV_ROW + c_inv_corr_0
#define RND_INV_ROW_1 RND_INV_ROW + c_inv_corr_1
#define RND_INV_ROW_2 RND_INV_ROW + c_inv_corr_2
#define RND_INV_ROW_3 RND_INV_ROW + c_inv_corr_3
#define RND_INV_ROW_4 RND_INV_ROW + c_inv_corr_4
#define RND_INV_ROW_5 RND_INV_ROW + c_inv_corr_5
#define RND_INV_ROW_6 RND_INV_ROW + c_inv_corr_6
#define RND_INV_ROW_7 RND_INV_ROW + c_inv_corr_7

/* Table for rows 0,4 - constants are multiplied on cos_4_16 */

__declspec(align(16)) short tab_i_04[] = { 
	16384, 21407, 16384, 8867,		
	-16384, 21407, 16384, -8867,	
	16384,  -8867,  16384, -21407,  
    16384,   8867, -16384, -21407,  
    22725,  19266,  19266,  -4520,  
    4520,  19266,  19266, -22725,   
    12873, -22725,   4520, -12873,  
    12873,   4520, -22725, -12873}; 

/* Table for rows 1,7 - constants are multiplied on cos_1_16 */

__declspec(align(16)) short tab_i_17[] = {
	22725,  29692,  22725,  12299,   
    -22725,  29692,  22725, -12299,  
    22725, -12299,  22725, -29692,   
    22725,  12299, -22725, -29692,   
    31521,  26722,  26722,  -6270,   
    6270,  26722,  26722, -31521,    
    17855, -31521,   6270, -17855,   
    17855,   6270, -31521, -17855};  

/* Table for rows 2,6 - constants are multiplied on cos_2_16 */

__declspec(align(16)) short tab_i_26[] = {
	21407,  27969,  21407,  11585,	
    -21407,  27969,  21407, -11585,	
    21407, -11585,  21407, -27969,	
    21407,  11585, -21407, -27969,	
    29692,  25172,  25172,  -5906,	
    5906,  25172,  25172, -29692,	
    16819, -29692,   5906, -16819,	
    16819,   5906, -29692, -16819};	

/* Table for rows 3,5 - constants are multiplied on cos_3_16 */

__declspec(align(16)) short tab_i_35[] = {
	19266,  25172,  19266,  10426,	
    -19266,  25172,  19266, -10426,	
    19266, -10426,  19266, -25172,	
    19266,  10426, -19266, -25172,	
    26722,  22654,  22654,  -5315,	
    5315,  22654,  22654, -26722,	
    15137, -26722,   5315, -15137,	
    15137,   5315, -26722, -15137};	
	
__declspec(align(16)) long round_i_0[] = {RND_INV_ROW_0,RND_INV_ROW_0,
	RND_INV_ROW_0,RND_INV_ROW_0};
__declspec(align(16)) long round_i_1[] = {RND_INV_ROW_1,RND_INV_ROW_1,
	RND_INV_ROW_1,RND_INV_ROW_1};
__declspec(align(16)) long round_i_2[] = {RND_INV_ROW_2,RND_INV_ROW_2,
	RND_INV_ROW_2,RND_INV_ROW_2};
__declspec(align(16)) long round_i_3[] = {RND_INV_ROW_3,RND_INV_ROW_3,
	RND_INV_ROW_3,RND_INV_ROW_3};
__declspec(align(16)) long round_i_4[] = {RND_INV_ROW_4,RND_INV_ROW_4,
	RND_INV_ROW_4,RND_INV_ROW_4};
__declspec(align(16)) long round_i_5[] = {RND_INV_ROW_5,RND_INV_ROW_5,
	RND_INV_ROW_5,RND_INV_ROW_5};
__declspec(align(16)) long round_i_6[] = {RND_INV_ROW_6,RND_INV_ROW_6,
	RND_INV_ROW_6,RND_INV_ROW_6};
__declspec(align(16)) long round_i_7[] = {RND_INV_ROW_7,RND_INV_ROW_7,
	RND_INV_ROW_7,RND_INV_ROW_7};

__declspec(align(16)) short tg_1_16[] = {
	13036,  13036,  13036,  13036,	/* tg * (2<<16) + 0.5 */
	13036,  13036,  13036,  13036};
__declspec(align(16)) short tg_2_16[] = {
	27146,  27146,  27146,  27146,	/* tg * (2<<16) + 0.5 */
	27146,  27146,  27146,  27146};
__declspec(align(16)) short tg_3_16[] = {
	-21746, -21746, -21746, -21746,	/* tg * (2<<16) + 0.5 */
	-21746, -21746, -21746, -21746};
__declspec(align(16)) short cos_4_16[] = {
	-19195, -19195, -19195, -19195,	/* cos * (2<<16) + 0.5 */
	-19195, -19195, -19195, -19195};

/*
* In this implementation the outputs of the iDCT-1D are multiplied
*    for rows 0,4 - on cos_4_16,
*    for rows 1,7 - on cos_1_16,
*    for rows 2,6 - on cos_2_16,
*    for rows 3,5 - on cos_3_16
* and are shifted to the left for rise of accuracy
*
* For used constants
*    FIX(float_const) = (short) (float_const * (1<<15) + 0.5)
*
*-----------------------------------------------------------------------------
*
* On the first stage the calculation is executed at once for two rows.
* The permutation for each output row is done on second stage
*    t7 t6 t5 t4 t3 t2 t1 t0 -> t4 t5 t6 t7 t3 t2 t1 t0
*
*-----------------------------------------------------------------------------
*/
	
#define DCT_8_INV_ROW_2R(TABLE, ROUND1, ROUND2) __asm {	\
	__asm pshuflw  xmm1, xmm0, 10001000b				\
    __asm pshuflw  xmm0, xmm0, 11011101b    			\
    __asm pshufhw  xmm1, xmm1, 10001000b    			\
	__asm pshufhw  xmm0, xmm0, 11011101b				\
	__asm movdqa   xmm2, XMMWORD PTR [TABLE]			\
	__asm pmaddwd  xmm2, xmm1							\
	__asm movdqa   xmm3, XMMWORD PTR [TABLE + 32]		\
	__asm pmaddwd  xmm3, xmm0               			\
	__asm pmaddwd  xmm1, XMMWORD PTR [TABLE + 16]		\
	__asm pmaddwd  xmm0, XMMWORD PTR [TABLE + 48]		\
	__asm pshuflw  xmm5, xmm4, 10001000b				\
	__asm pshuflw  xmm4, xmm4, 11011101b    			\
	__asm pshufhw  xmm5, xmm5, 10001000b    			\
	__asm pshufhw  xmm4, xmm4, 11011101b    			\
	__asm movdqa   xmm6, XMMWORD PTR [TABLE]			\
	__asm pmaddwd  xmm6, xmm5               			\
	__asm movdqa   xmm7, XMMWORD PTR [TABLE + 32]		\
	__asm pmaddwd  xmm7, xmm4               			\
	__asm pmaddwd  xmm5, XMMWORD PTR [TABLE + 16]		\
	__asm pmaddwd  xmm4, XMMWORD PTR [TABLE + 48]		\
	__asm pshufd   xmm1, xmm1, 01001110b    			\
	__asm pshufd   xmm0, xmm0, 01001110b    			\
	__asm paddd    xmm2, XMMWORD PTR [ROUND1]			\
	__asm paddd    xmm3, xmm0							\
	__asm paddd    xmm1, xmm2							\
	__asm pshufd   xmm5, xmm5, 01001110b    			\
	__asm pshufd   xmm4, xmm4, 01001110b    			\
	__asm movdqa   xmm2, xmm1             				\
	__asm psubd    xmm2, xmm3             				\
	__asm psrad    xmm2, SHIFT_INV_ROW    				\
	__asm paddd    xmm1, xmm3							\
	__asm psrad    xmm1, SHIFT_INV_ROW      			\
	__asm packssdw xmm1, xmm2							\
	__asm paddd    xmm6, XMMWORD PTR [ROUND2]			\
	__asm paddd    xmm7, xmm4							\
	__asm paddd    xmm5, xmm6							\
	__asm movdqa   xmm6, xmm5	            			\
	__asm psubd    xmm6, xmm7               			\
	__asm psrad    xmm6, SHIFT_INV_ROW      			\
	__asm paddd    xmm5, xmm7							\
	__asm psrad    xmm5, SHIFT_INV_ROW      			\
	__asm packssdw xmm5, xmm6							\
	}

/*
*
* The second stage - inverse DCTs of columns
*
* The inputs are multiplied
*    for rows 0,4 - on cos_4_16,
*    for rows 1,7 - on cos_1_16,
*    for rows 2,6 - on cos_2_16,
*    for rows 3,5 - on cos_3_16
* and are shifted to the left for rise of accuracy
*/

#define DCT_8_INV_COL_8R(INP, OUTP) __asm {		\
	__asm movdqa   xmm0, [INP + 5*16]			\
    __asm movdqa   xmm1, XMMWORD PTR tg_3_16	\
    __asm movdqa   xmm2, xmm0            		\
    __asm movdqa   xmm3, [INP + 3*16]   		\
    __asm pmulhw   xmm0, xmm1           		\
    __asm movdqa   xmm4, [INP + 7*16]   		\
    __asm pmulhw   xmm1, xmm3           		\
    __asm movdqa   xmm5, XMMWORD PTR tg_1_16   	\
    __asm movdqa   xmm6, xmm4            		\
    __asm pmulhw   xmm4, xmm5           		\
    __asm paddsw   xmm0, xmm2           		\
    __asm pmulhw   xmm5, [INP + 1*16]   		\
    __asm paddsw   xmm1, xmm3           		\
    __asm movdqa   xmm7, [INP + 6*16]    		\
    __asm paddsw   xmm0, xmm3					\
    __asm movdqa   xmm3, XMMWORD PTR tg_2_16	\
    __asm psubsw   xmm2, xmm1					\
    __asm pmulhw   xmm7, xmm3            		\
    __asm movdqa   xmm1, xmm0            		\
    __asm pmulhw   xmm3, [INP + 2*16]   		\
    __asm psubsw   xmm5, xmm6					\
    __asm paddsw   xmm4, [INP + 1*16]    		\
    __asm paddsw   xmm0, xmm4            		\
    __asm psubsw   xmm4, xmm1					\
    __asm pshufhw  xmm0, xmm0, 00011011b		\
    __asm paddsw   xmm7, [INP + 2*16]    		\
    __asm movdqa   xmm6, xmm5					\
    __asm psubsw   xmm3, [INP + 6*16]    		\
    __asm psubsw   xmm5, xmm2            		\
    __asm paddsw   xmm6, xmm2					\
	__asm movdqa   [OUTP + 7*16], xmm0    		\
    __asm movdqa   xmm1, xmm4            		\
    __asm movdqa   xmm2, XMMWORD PTR cos_4_16  	\
    __asm paddsw   xmm4, xmm5            		\
    __asm movdqa   xmm0, XMMWORD PTR cos_4_16  	\
    __asm pmulhw   xmm2, xmm4					\
    __asm pshufhw  xmm6, xmm6, 00011011b		\
    __asm movdqa   [OUTP + 3*16], xmm6    		\
    __asm psubsw   xmm1, xmm5            		\
    __asm movdqa   xmm6, [INP + 0*16]   		\
    __asm pmulhw   xmm0, xmm1					\
    __asm movdqa   xmm5, [INP + 4*16]    		\
    __asm paddsw   xmm4, xmm2					\
    __asm paddsw   xmm5, xmm6       			\
    __asm psubsw   xmm6, [INP + 4*16]   		\
    __asm paddsw   xmm0, xmm1					\
    __asm pshufhw  xmm4, xmm4, 00011011b		\
    __asm movdqa   xmm2, xmm5            		\
    __asm paddsw   xmm5, xmm7            		\
    __asm movdqa   xmm1, xmm6					\
    __asm psubsw   xmm2, xmm7					\
    __asm movdqa   xmm7, [OUTP + 7*16]    		\
    __asm paddsw   xmm6, xmm3            		\
    __asm pshufhw  xmm5, xmm5, 00011011b		\
	__asm paddsw   xmm7, xmm5					\
    __asm psubsw   xmm1, xmm3					\
    __asm pshufhw  xmm6, xmm6, 00011011b		\
	__asm movdqa   xmm3, xmm6					\
    __asm paddsw   xmm6, xmm4            		\
    __asm pshufhw  xmm2, xmm2, 00011011b		\
    __asm psraw    xmm7, SHIFT_INV_COL   		\
    __asm movdqa   [OUTP + 0*16], xmm7    		\
    __asm movdqa   xmm7, xmm1            		\
    __asm paddsw   xmm1, xmm0					\
    __asm psraw    xmm6, SHIFT_INV_COL			\
    __asm movdqa   [OUTP + 1*16], xmm6    		\
    __asm pshufhw  xmm1, xmm1, 00011011b		\
	__asm movdqa   xmm6, [OUTP + 3*16]			\
    __asm psubsw   xmm7, xmm0            		\
    __asm psraw    xmm1, SHIFT_INV_COL   		\
    __asm movdqa   [OUTP + 2*16], xmm1    		\
    __asm psubsw   xmm5, [OUTP + 7*16]			\
    __asm paddsw   xmm6, xmm2            		\
    __asm psubsw   xmm2, [OUTP + 3*16]			\
    __asm psubsw   xmm3, xmm4            		\
    __asm psraw    xmm7, SHIFT_INV_COL  		\
    __asm pshufhw  xmm7, xmm7, 00011011b		\
    __asm movdqa   [OUTP + 5*16], xmm7    		\
    __asm psraw    xmm5, SHIFT_INV_COL			\
    __asm movdqa   [OUTP + 7*16], xmm5    		\
    __asm psraw    xmm6, SHIFT_INV_COL			\
    __asm movdqa   [OUTP + 3*16], xmm6    		\
    __asm psraw    xmm2, SHIFT_INV_COL			\
    __asm movdqa   [OUTP + 4*16], xmm2    		\
    __asm psraw    xmm3, SHIFT_INV_COL			\
    __asm movdqa   [OUTP + 6*16], xmm3    		\
	}

/*
*
*  Name:      dct_8x8_inv_16s
*  Purpose:   Inverse Discrete Cosine Transform 8x8 with
*             2D buffer of short int data
*  Context:
*      void dct_8x8_inv_16s ( short *src, short *dst )
*  Parameters:
*      src  - Pointer to the source buffer
*      dst  - Pointer to the destination buffer
*
*/

GLOBAL(void)
dct_8x8_inv_16s ( short *src, short *dst ) {
	
	__asm {

		mov     ecx,  src
		mov     edx,  dst

		movdqa  xmm0, [ecx+0*16]
		movdqa  xmm4, [ecx+4*16]
		DCT_8_INV_ROW_2R(tab_i_04, round_i_0, round_i_4)
		movdqa     [edx+0*16], xmm1 
		movdqa     [edx+4*16], xmm5 

		movdqa  xmm0, [ecx+1*16]
		movdqa  xmm4, [ecx+7*16]
		DCT_8_INV_ROW_2R(tab_i_17, round_i_1, round_i_7)
		movdqa     [edx+1*16], xmm1 
		movdqa     [edx+7*16], xmm5 

		movdqa  xmm0, [ecx+3*16]
		movdqa  xmm4, [ecx+5*16]
		DCT_8_INV_ROW_2R(tab_i_35, round_i_3, round_i_5);
		movdqa     [edx+3*16], xmm1 
		movdqa     [edx+5*16], xmm5 

		movdqa  xmm0, [ecx+2*16]
		movdqa  xmm4, [ecx+6*16]
		DCT_8_INV_ROW_2R(tab_i_26, round_i_2, round_i_6);
		movdqa     [edx+2*16], xmm1
		movdqa     [edx+6*16], xmm5    

		DCT_8_INV_COL_8R(edx+0, edx+0);
	}
}


/*
*  Name:
*    ownpj_QuantInv_8x8_16s
*
*  Purpose:
*    Dequantize 8x8 block of DCT coefficients
*
*  Context:
*    void ownpj_QuantInv_8x8_16s
*            Ipp16s*  pSrc,
*            Ipp16s*  pDst,
*      const Ipp16u*  pQTbl)*
*
*/

GLOBAL(void)
ownpj_QuantInv_8x8_16s(short * pSrc, short * pDst, const unsigned short * pQTbl)
{
	__asm {

		push        ebx
		push        ecx
		push        edx
		push        esi
		push        edi

		mov         esi, pSrc
		mov         edi, pDst
		mov         edx, pQTbl
		mov         ecx, 4
		mov         ebx, 32

	again:

		movq        mm0, QWORD PTR [esi+0]
		movq        mm1, QWORD PTR [esi+8]
		movq        mm2, QWORD PTR [esi+16]
		movq        mm3, QWORD PTR [esi+24]

		prefetcht0  [esi+ebx] ; fetch next cache line

		pmullw      mm0, QWORD PTR [edx+0]
		pmullw      mm1, QWORD PTR [edx+8]
		pmullw      mm2, QWORD PTR [edx+16]
		pmullw      mm3, QWORD PTR [edx+24]

		movq        QWORD PTR [edi+0], mm0
		movq        QWORD PTR [edi+8], mm1
		movq        QWORD PTR [edi+16], mm2
		movq        QWORD PTR [edi+24], mm3

		add         esi, ebx
		add         edi, ebx
		add         edx, ebx
		dec         ecx
		jnz         again

		emms

		pop         edi
		pop         esi
		pop         edx
		pop         ecx
		pop         ebx
	}
}


/*
*  Name:
*    ownpj_Add128_8x8_16s8u
*
*  Purpose:
*    signed to unsigned conversion (level shift)
*    for 8x8 block of DCT coefficients
*
*  Context:
*    void ownpj_Add128_8x8_16s8u
*      const Ipp16s* pSrc,
*            Ipp8u*  pDst,
*            int     DstStep);
*
*/

__declspec(align(16)) long const_128[]= {0x00800080, 0x00800080, 0x00800080, 0x00800080};

GLOBAL(void)
ownpj_Add128_8x8_16s8u(const short * pSrc, unsigned char * pDst, int DstStep)
{
	__asm {
		push        eax
		push        ebx
		push        ecx
		push        edx
		push        esi
		push        edi

		mov         esi, pSrc
		mov         edi, pDst
		mov         edx, DstStep
		mov         ecx, 2
		mov         ebx, edx
		mov         eax, edx
		sal         ebx, 1
		add         eax, ebx
		movdqa      xmm7, XMMWORD PTR const_128

	again:

		movdqa      xmm0, XMMWORD PTR [esi+0]  ; line 0
		movdqa      xmm1, XMMWORD PTR [esi+16] ; line 1
		movdqa      xmm2, XMMWORD PTR [esi+32] ; line 2
		movdqa      xmm3, XMMWORD PTR [esi+48] ; line 3

		paddw     xmm0, xmm7
		paddw     xmm1, xmm7
		paddw     xmm2, xmm7
		paddw     xmm3, xmm7

		packuswb  xmm0, xmm1
		packuswb  xmm2, xmm3

		movq      QWORD PTR [edi], xmm0      ;0*DstStep
		movq      QWORD PTR [edi+ebx], xmm2  ;2*DstStep

		psrldq      xmm0, 8
		psrldq      xmm2, 8

		movq      QWORD PTR [edi+edx], xmm0  ;1*DstStep
		movq      QWORD PTR [edi+eax], xmm2  ;3*DstStep

		add         edi, ebx
		add         esi, 64
		add         edi, ebx
		dec         ecx
		jnz         again

		pop         edi
		pop         esi
		pop         edx
		pop         ecx
		pop         ebx
		pop         eax
	}
}


/* 
*  Name:
*    ippiDCTQuantInv8x8LS_JPEG_16s8u_C1R
*
*  Purpose:
*    Inverse DCT transform, de-quantization and level shift
*
*  Parameters:
*    pSrc               - pointer to source
*    pDst               - pointer to output array
*    DstStep            - line offset for output data
*    pEncoderQuantTable - pointer to Quantization table
*
*/

GLOBAL(void)
ippiDCTQuantInv8x8LS_JPEG_16s8u_C1R(
  short * pSrc,
  unsigned char *  pDst,
  int     DstStep,
  const unsigned short * pQuantInvTable)
{

	__declspec(align(16)) Ipp8u buf[DCTSIZE2*sizeof(Ipp16s)];
	Ipp16s * workbuf = (Ipp16s *)buf;	

	ownpj_QuantInv_8x8_16s(pSrc,workbuf,pQuantInvTable);
	dct_8x8_inv_16s(workbuf,workbuf);
	ownpj_Add128_8x8_16s8u(workbuf,pDst,DstStep);
  
} 

GLOBAL(void)
jpeg_idct_islow_sse2 (
	j_decompress_ptr cinfo, 
	jpeg_component_info * compptr,
	JCOEFPTR coef_block,
	JSAMPARRAY output_buf, 
	JDIMENSION output_col)
{
	int			ctr;
	JCOEFPTR	inptr;
	Ipp16u*		quantptr;
	Ipp8u*		wsptr;
	__declspec(align(16)) Ipp8u workspace[DCTSIZE2];  	
	JSAMPROW	outptr;

	inptr = coef_block;
	quantptr = (Ipp16u*)compptr->dct_table;
	wsptr = workspace;
	
	ippiDCTQuantInv8x8LS_JPEG_16s8u_C1R(inptr, workspace, 8, quantptr);

	for(ctr = 0; ctr < DCTSIZE; ctr++)
	{
		outptr = output_buf[ctr] + output_col;

		outptr[0] = wsptr[0];
		outptr[1] = wsptr[1];
		outptr[2] = wsptr[2];
		outptr[3] = wsptr[3];
		outptr[4] = wsptr[4];
		outptr[5] = wsptr[5];
		outptr[6] = wsptr[6];
		outptr[7] = wsptr[7];

		wsptr += DCTSIZE;
	}
}
#endif /* HAVE_SSE2_INTEL_MNEMONICS */

#endif /* DCT_ISLOW_SUPPORTED */