DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (555cbc23500e)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
/********************************************************************
 *                                                                  *
 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE.   *
 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
 *                                                                  *
 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009             *
 * by the Xiph.Org Foundation http://www.xiph.org/                  *
 *                                                                  *
 ********************************************************************

  function: LSP (also called LSF) conversion routines
  last mod: $Id: lsp.c 16227 2009-07-08 06:58:46Z xiphmont $

  The LSP generation code is taken (with minimal modification and a
  few bugfixes) from "On the Computation of the LSP Frequencies" by
  Joseph Rothweiler (see http://www.rothweiler.us for contact info).
  The paper is available at:

  http://www.myown1.com/joe/lsf

 ********************************************************************/

/* Note that the lpc-lsp conversion finds the roots of polynomial with
   an iterative root polisher (CACM algorithm 283).  It *is* possible
   to confuse this algorithm into not converging; that should only
   happen with absurdly closely spaced roots (very sharp peaks in the
   LPC f response) which in turn should be impossible in our use of
   the code.  If this *does* happen anyway, it's a bug in the floor
   finder; find the cause of the confusion (probably a single bin
   spike or accidental near-float-limit resolution problems) and
   correct it. */

#include <math.h>
#include <string.h>
#include <stdlib.h>
#include "lsp.h"
#include "os.h"
#include "misc.h"
#include "lookup.h"
#include "scales.h"

/* three possible LSP to f curve functions; the exact computation
   (float), a lookup based float implementation, and an integer
   implementation.  The float lookup is likely the optimal choice on
   any machine with an FPU.  The integer implementation is *not* fixed
   point (due to the need for a large dynamic range and thus a
   seperately tracked exponent) and thus much more complex than the
   relatively simple float implementations. It's mostly for future
   work on a fully fixed point implementation for processors like the
   ARM family. */

/* define either of these (preferably FLOAT_LOOKUP) to have faster
   but less precise implementation. */
#undef FLOAT_LOOKUP
#undef INT_LOOKUP

#ifdef FLOAT_LOOKUP
#include "vorbis_lookup.c" /* catch this in the build system; we #include for
                       compilers (like gcc) that can't inline across
                       modules */

/* side effect: changes *lsp to cosines of lsp */
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
                            float amp,float ampoffset){
  int i;
  float wdel=M_PI/ln;
  vorbis_fpu_control fpu;

  vorbis_fpu_setround(&fpu);
  for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);

  i=0;
  while(i<n){
    int k=map[i];
    int qexp;
    float p=.7071067812f;
    float q=.7071067812f;
    float w=vorbis_coslook(wdel*k);
    float *ftmp=lsp;
    int c=m>>1;

    do{
      q*=ftmp[0]-w;
      p*=ftmp[1]-w;
      ftmp+=2;
    }while(--c);

    if(m&1){
      /* odd order filter; slightly assymetric */
      /* the last coefficient */
      q*=ftmp[0]-w;
      q*=q;
      p*=p*(1.f-w*w);
    }else{
      /* even order filter; still symmetric */
      q*=q*(1.f+w);
      p*=p*(1.f-w);
    }

    q=frexp(p+q,&qexp);
    q=vorbis_fromdBlook(amp*
                        vorbis_invsqlook(q)*
                        vorbis_invsq2explook(qexp+m)-
                        ampoffset);

    do{
      curve[i++]*=q;
    }while(map[i]==k);
  }
  vorbis_fpu_restore(fpu);
}

#else

#ifdef INT_LOOKUP
#include "vorbis_lookup.c" /* catch this in the build system; we #include for
                       compilers (like gcc) that can't inline across
                       modules */

static const int MLOOP_1[64]={
   0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
  14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
  15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
  15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
};

static const int MLOOP_2[64]={
  0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
  8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
  9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
  9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
};

static const int MLOOP_3[8]={0,1,2,2,3,3,3,3};


/* side effect: changes *lsp to cosines of lsp */
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
                            float amp,float ampoffset){

  /* 0 <= m < 256 */

  /* set up for using all int later */
  int i;
  int ampoffseti=rint(ampoffset*4096.f);
  int ampi=rint(amp*16.f);
  long *ilsp=alloca(m*sizeof(*ilsp));
  for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);

  i=0;
  while(i<n){
    int j,k=map[i];
    unsigned long pi=46341; /* 2**-.5 in 0.16 */
    unsigned long qi=46341;
    int qexp=0,shift;
    long wi=vorbis_coslook_i(k*65536/ln);

    qi*=labs(ilsp[0]-wi);
    pi*=labs(ilsp[1]-wi);

    for(j=3;j<m;j+=2){
      if(!(shift=MLOOP_1[(pi|qi)>>25]))
        if(!(shift=MLOOP_2[(pi|qi)>>19]))
          shift=MLOOP_3[(pi|qi)>>16];
      qi=(qi>>shift)*labs(ilsp[j-1]-wi);
      pi=(pi>>shift)*labs(ilsp[j]-wi);
      qexp+=shift;
    }
    if(!(shift=MLOOP_1[(pi|qi)>>25]))
      if(!(shift=MLOOP_2[(pi|qi)>>19]))
        shift=MLOOP_3[(pi|qi)>>16];

    /* pi,qi normalized collectively, both tracked using qexp */

    if(m&1){
      /* odd order filter; slightly assymetric */
      /* the last coefficient */
      qi=(qi>>shift)*labs(ilsp[j-1]-wi);
      pi=(pi>>shift)<<14;
      qexp+=shift;

      if(!(shift=MLOOP_1[(pi|qi)>>25]))
        if(!(shift=MLOOP_2[(pi|qi)>>19]))
          shift=MLOOP_3[(pi|qi)>>16];

      pi>>=shift;
      qi>>=shift;
      qexp+=shift-14*((m+1)>>1);

      pi=((pi*pi)>>16);
      qi=((qi*qi)>>16);
      qexp=qexp*2+m;

      pi*=(1<<14)-((wi*wi)>>14);
      qi+=pi>>14;

    }else{
      /* even order filter; still symmetric */

      /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
         worth tracking step by step */

      pi>>=shift;
      qi>>=shift;
      qexp+=shift-7*m;

      pi=((pi*pi)>>16);
      qi=((qi*qi)>>16);
      qexp=qexp*2+m;

      pi*=(1<<14)-wi;
      qi*=(1<<14)+wi;
      qi=(qi+pi)>>14;

    }


    /* we've let the normalization drift because it wasn't important;
       however, for the lookup, things must be normalized again.  We
       need at most one right shift or a number of left shifts */

    if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
      qi>>=1; qexp++;
    }else
      while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
        qi<<=1; qexp--;
      }

    amp=vorbis_fromdBlook_i(ampi*                     /*  n.4         */
                            vorbis_invsqlook_i(qi,qexp)-
                                                      /*  m.8, m+n<=8 */
                            ampoffseti);              /*  8.12[0]     */

    curve[i]*=amp;
    while(map[++i]==k)curve[i]*=amp;
  }
}

#else

/* old, nonoptimized but simple version for any poor sap who needs to
   figure out what the hell this code does, or wants the other
   fraction of a dB precision */

/* side effect: changes *lsp to cosines of lsp */
void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
                            float amp,float ampoffset){
  int i;
  float wdel=M_PI/ln;
  for(i=0;i<m;i++)lsp[i]=2.f*cos(lsp[i]);

  i=0;
  while(i<n){
    int j,k=map[i];
    float p=.5f;
    float q=.5f;
    float w=2.f*cos(wdel*k);
    for(j=1;j<m;j+=2){
      q *= w-lsp[j-1];
      p *= w-lsp[j];
    }
    if(j==m){
      /* odd order filter; slightly assymetric */
      /* the last coefficient */
      q*=w-lsp[j-1];
      p*=p*(4.f-w*w);
      q*=q;
    }else{
      /* even order filter; still symmetric */
      p*=p*(2.f-w);
      q*=q*(2.f+w);
    }

    q=fromdB(amp/sqrt(p+q)-ampoffset);

    curve[i]*=q;
    while(map[++i]==k)curve[i]*=q;
  }
}

#endif
#endif

static void cheby(float *g, int ord) {
  int i, j;

  g[0] *= .5f;
  for(i=2; i<= ord; i++) {
    for(j=ord; j >= i; j--) {
      g[j-2] -= g[j];
      g[j] += g[j];
    }
  }
}

static int comp(const void *a,const void *b){
  return (*(float *)a<*(float *)b)-(*(float *)a>*(float *)b);
}

/* Newton-Raphson-Maehly actually functioned as a decent root finder,
   but there are root sets for which it gets into limit cycles
   (exacerbated by zero suppression) and fails.  We can't afford to
   fail, even if the failure is 1 in 100,000,000, so we now use
   Laguerre and later polish with Newton-Raphson (which can then
   afford to fail) */

#define EPSILON 10e-7
static int Laguerre_With_Deflation(float *a,int ord,float *r){
  int i,m;
  double lastdelta=0.f;
  double *defl=alloca(sizeof(*defl)*(ord+1));
  for(i=0;i<=ord;i++)defl[i]=a[i];

  for(m=ord;m>0;m--){
    double new=0.f,delta;

    /* iterate a root */
    while(1){
      double p=defl[m],pp=0.f,ppp=0.f,denom;

      /* eval the polynomial and its first two derivatives */
      for(i=m;i>0;i--){
        ppp = new*ppp + pp;
        pp  = new*pp  + p;
        p   = new*p   + defl[i-1];
      }

      /* Laguerre's method */
      denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
      if(denom<0)
        return(-1);  /* complex root!  The LPC generator handed us a bad filter */

      if(pp>0){
        denom = pp + sqrt(denom);
        if(denom<EPSILON)denom=EPSILON;
      }else{
        denom = pp - sqrt(denom);
        if(denom>-(EPSILON))denom=-(EPSILON);
      }

      delta  = m*p/denom;
      new   -= delta;

      if(delta<0.f)delta*=-1;

      if(fabs(delta/new)<10e-12)break;
      lastdelta=delta;
    }

    r[m-1]=new;

    /* forward deflation */

    for(i=m;i>0;i--)
      defl[i-1]+=new*defl[i];
    defl++;

  }
  return(0);
}


/* for spit-and-polish only */
static int Newton_Raphson(float *a,int ord,float *r){
  int i, k, count=0;
  double error=1.f;
  double *root=alloca(ord*sizeof(*root));

  for(i=0; i<ord;i++) root[i] = r[i];

  while(error>1e-20){
    error=0;

    for(i=0; i<ord; i++) { /* Update each point. */
      double pp=0.,delta;
      double rooti=root[i];
      double p=a[ord];
      for(k=ord-1; k>= 0; k--) {

        pp= pp* rooti + p;
        p = p * rooti + a[k];
      }

      delta = p/pp;
      root[i] -= delta;
      error+= delta*delta;
    }

    if(count>40)return(-1);

    count++;
  }

  /* Replaced the original bubble sort with a real sort.  With your
     help, we can eliminate the bubble sort in our lifetime. --Monty */

  for(i=0; i<ord;i++) r[i] = root[i];
  return(0);
}


/* Convert lpc coefficients to lsp coefficients */
int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
  int order2=(m+1)>>1;
  int g1_order,g2_order;
  float *g1=alloca(sizeof(*g1)*(order2+1));
  float *g2=alloca(sizeof(*g2)*(order2+1));
  float *g1r=alloca(sizeof(*g1r)*(order2+1));
  float *g2r=alloca(sizeof(*g2r)*(order2+1));
  int i;

  /* even and odd are slightly different base cases */
  g1_order=(m+1)>>1;
  g2_order=(m)  >>1;

  /* Compute the lengths of the x polynomials. */
  /* Compute the first half of K & R F1 & F2 polynomials. */
  /* Compute half of the symmetric and antisymmetric polynomials. */
  /* Remove the roots at +1 and -1. */

  g1[g1_order] = 1.f;
  for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
  g2[g2_order] = 1.f;
  for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];

  if(g1_order>g2_order){
    for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
  }else{
    for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
    for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
  }

  /* Convert into polynomials in cos(alpha) */
  cheby(g1,g1_order);
  cheby(g2,g2_order);

  /* Find the roots of the 2 even polynomials.*/
  if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
     Laguerre_With_Deflation(g2,g2_order,g2r))
    return(-1);

  Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
  Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */

  qsort(g1r,g1_order,sizeof(*g1r),comp);
  qsort(g2r,g2_order,sizeof(*g2r),comp);

  for(i=0;i<g1_order;i++)
    lsp[i*2] = acos(g1r[i]);

  for(i=0;i<g2_order;i++)
    lsp[i*2+1] = acos(g2r[i]);
  return(0);
}