DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/* 
 * ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is the elliptic curve math library for prime field curves.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Douglas Stebila <douglas@stebila.ca>
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#include <stdlib.h>

#define ECP521_DIGITS ECL_CURVE_DIGITS(521)

/* Fast modular reduction for p521 = 2^521 - 1.  a can be r. Uses
 * algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to 
 * Elliptic Curve Cryptography. */
mp_err
ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
	mp_err res = MP_OKAY;
	int a_bits = mpl_significant_bits(a);
	int i;

	/* m1, m2 are statically-allocated mp_int of exactly the size we need */
	mp_int m1;

	mp_digit s1[ECP521_DIGITS] = { 0 };

	MP_SIGN(&m1) = MP_ZPOS;
	MP_ALLOC(&m1) = ECP521_DIGITS;
	MP_USED(&m1) = ECP521_DIGITS;
	MP_DIGITS(&m1) = s1;

	if (a_bits < 521) {
		if (a==r) return MP_OKAY;
		return mp_copy(a, r);
	}
	/* for polynomials larger than twice the field size or polynomials 
	 * not using all words, use regular reduction */
	if (a_bits > (521*2)) {
		MP_CHECKOK(mp_mod(a, &meth->irr, r));
	} else {
#define FIRST_DIGIT (ECP521_DIGITS-1)
		for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) {
			s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9) 
				| (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9));
		}
		s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9;

		if ( a != r ) {
			MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS));
			for (i = 0; i < ECP521_DIGITS; i++) {
				MP_DIGIT(r,i) = MP_DIGIT(a, i);
			}
		}
		MP_USED(r) = ECP521_DIGITS;
		MP_DIGIT(r,FIRST_DIGIT) &=  0x1FF;

		MP_CHECKOK(s_mp_add(r, &m1));
		if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) {
			MP_CHECKOK(s_mp_add_d(r,1));
			MP_DIGIT(r,FIRST_DIGIT) &=  0x1FF;
		}
		s_mp_clamp(r);
	}

  CLEANUP:
	return res;
}

/* Compute the square of polynomial a, reduce modulo p521. Store the
 * result in r.  r could be a.  Uses optimized modular reduction for p521. 
 */
mp_err
ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
	mp_err res = MP_OKAY;

	MP_CHECKOK(mp_sqr(a, r));
	MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
  CLEANUP:
	return res;
}

/* Compute the product of two polynomials a and b, reduce modulo p521.
 * Store the result in r.  r could be a or b; a could be b.  Uses
 * optimized modular reduction for p521. */
mp_err
ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r,
					const GFMethod *meth)
{
	mp_err res = MP_OKAY;

	MP_CHECKOK(mp_mul(a, b, r));
	MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
  CLEANUP:
	return res;
}

/* Divides two field elements. If a is NULL, then returns the inverse of
 * b. */
mp_err
ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r,
		   const GFMethod *meth)
{
	mp_err res = MP_OKAY;
	mp_int t;

	/* If a is NULL, then return the inverse of b, otherwise return a/b. */
	if (a == NULL) {
		return mp_invmod(b, &meth->irr, r);
	} else {
		/* MPI doesn't support divmod, so we implement it using invmod and 
		 * mulmod. */
		MP_CHECKOK(mp_init(&t));
		MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
		MP_CHECKOK(mp_mul(a, &t, r));
		MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
	  CLEANUP:
		mp_clear(&t);
		return res;
	}
}

/* Wire in fast field arithmetic and precomputation of base point for
 * named curves. */
mp_err
ec_group_set_gfp521(ECGroup *group, ECCurveName name)
{
	if (name == ECCurve_NIST_P521) {
		group->meth->field_mod = &ec_GFp_nistp521_mod;
		group->meth->field_mul = &ec_GFp_nistp521_mul;
		group->meth->field_sqr = &ec_GFp_nistp521_sqr;
		group->meth->field_div = &ec_GFp_nistp521_div;
	}
	return MP_OKAY;
}