DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
/* 
 * ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is the elliptic curve math library for prime field curves.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef __ecp_h_
#define __ecp_h_

#include "ecl-priv.h"

/* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);

/* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);

/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
 * qy). Uses affine coordinates. */
mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
						 const mp_int *qx, const mp_int *qy, mp_int *rx,
						 mp_int *ry, const ECGroup *group);

/* Computes R = P - Q.  Uses affine coordinates. */
mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
						 const mp_int *qx, const mp_int *qy, mp_int *rx,
						 mp_int *ry, const ECGroup *group);

/* Computes R = 2P.  Uses affine coordinates. */
mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
						 mp_int *ry, const ECGroup *group);

/* Validates a point on a GFp curve. */
mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);

#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GFp.  Uses affine coordinates. */
mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
						 const mp_int *py, mp_int *rx, mp_int *ry,
						 const ECGroup *group);
#endif

/* Converts a point P(px, py) from affine coordinates to Jacobian
 * projective coordinates R(rx, ry, rz). */
mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
						 mp_int *ry, mp_int *rz, const ECGroup *group);

/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
 * affine coordinates R(rx, ry). */
mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
						 const mp_int *pz, mp_int *rx, mp_int *ry,
						 const ECGroup *group);

/* Checks if point P(px, py, pz) is at infinity.  Uses Jacobian
 * coordinates. */
mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
							const mp_int *pz);

/* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
 * coordinates. */
mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);

/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
 * (qx, qy, qz).  Uses Jacobian coordinates. */
mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
							 const mp_int *pz, const mp_int *qx,
							 const mp_int *qy, mp_int *rx, mp_int *ry,
							 mp_int *rz, const ECGroup *group);

/* Computes R = 2P.  Uses Jacobian coordinates. */
mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
						 const mp_int *pz, mp_int *rx, mp_int *ry,
						 mp_int *rz, const ECGroup *group);

#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GFp.  Uses Jacobian coordinates. */
mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
						 const mp_int *py, mp_int *rx, mp_int *ry,
						 const ECGroup *group);
#endif

/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
 * (base point) of the group of points on the elliptic curve. Allows k1 =
 * NULL or { k2, P } = NULL.  Implemented using mixed Jacobian-affine
 * coordinates. Input and output values are assumed to be NOT
 * field-encoded and are in affine form. */
mp_err
 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
					const mp_int *py, mp_int *rx, mp_int *ry,
					const ECGroup *group);

/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
 * curve points P and R can be identical. Uses mixed Modified-Jacobian
 * co-ordinates for doubling and Chudnovsky Jacobian coordinates for
 * additions. Assumes input is already field-encoded using field_enc, and
 * returns output that is still field-encoded. Uses 5-bit window NAF
 * method (algorithm 11) for scalar-point multiplication from Brown,
 * Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic 
 * Curves Over Prime Fields. */
mp_err
 ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
					   mp_int *rx, mp_int *ry, const ECGroup *group);

#endif							/* __ecp_h_ */