DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
/* 
 * ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is the elliptic curve math library for binary polynomial field curves.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef __ec2_h_
#define __ec2_h_

#include "ecl-priv.h"

/* Checks if point P(px, py) is at infinity.  Uses affine coordinates. */
mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py);

/* Sets P(px, py) to be the point at infinity.  Uses affine coordinates. */
mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py);

/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
 * qy). Uses affine coordinates. */
mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py,
						  const mp_int *qx, const mp_int *qy, mp_int *rx,
						  mp_int *ry, const ECGroup *group);

/* Computes R = P - Q.  Uses affine coordinates. */
mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py,
						  const mp_int *qx, const mp_int *qy, mp_int *rx,
						  mp_int *ry, const ECGroup *group);

/* Computes R = 2P.  Uses affine coordinates. */
mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
						  mp_int *ry, const ECGroup *group);

/* Validates a point on a GF2m curve. */
mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);

/* by default, this routine is unused and thus doesn't need to be compiled */
#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the irreducible that 
 * determines the field GF2m.  Uses affine coordinates. */
mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px,
						  const mp_int *py, mp_int *rx, mp_int *ry,
						  const ECGroup *group);
#endif

/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the irreducible that 
 * determines the field GF2m.  Uses Montgomery projective coordinates. */
mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px,
						   const mp_int *py, mp_int *rx, mp_int *ry,
						   const ECGroup *group);

#ifdef ECL_ENABLE_GF2M_PROJ
/* Converts a point P(px, py) from affine coordinates to projective
 * coordinates R(rx, ry, rz). */
mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx,
						   mp_int *ry, mp_int *rz, const ECGroup *group);

/* Converts a point P(px, py, pz) from projective coordinates to affine
 * coordinates R(rx, ry). */
mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py,
						   const mp_int *pz, mp_int *rx, mp_int *ry,
						   const ECGroup *group);

/* Checks if point P(px, py, pz) is at infinity.  Uses projective
 * coordinates. */
mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py,
							  const mp_int *pz);

/* Sets P(px, py, pz) to be the point at infinity.  Uses projective
 * coordinates. */
mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz);

/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
 * (qx, qy, qz).  Uses projective coordinates. */
mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py,
						   const mp_int *pz, const mp_int *qx,
						   const mp_int *qy, mp_int *rx, mp_int *ry,
						   mp_int *rz, const ECGroup *group);

/* Computes R = 2P.  Uses projective coordinates. */
mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py,
						   const mp_int *pz, mp_int *rx, mp_int *ry,
						   mp_int *rz, const ECGroup *group);

/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
 * a, b and p are the elliptic curve coefficients and the prime that
 * determines the field GF2m.  Uses projective coordinates. */
mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px,
						   const mp_int *py, mp_int *rx, mp_int *ry,
						   const ECGroup *group);
#endif

#endif							/* __ec2_h_ */