DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Untracked file

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/* 
 * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
 * Copyright (c) 1996 by Silicon Graphics.  All rights reserved.
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 *
 * Permission is hereby granted to use or copy this program
 * for any purpose,  provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is granted,
 * provided the above notices are retained, and a notice that the code was
 * modified is included with the above copyright notice.
 */
/*
 * Support code for Irix (>=6.2) Pthreads.  This relies on properties
 * not guaranteed by the Pthread standard.  It may or may not be portable
 * to other implementations.
 *
 * Note that there is a lot of code duplication between linux_threads.c
 * and irix_threads.c; any changes made here may need to be reflected
 * there too.
 */

# if defined(IRIX_THREADS)

# include "gc_priv.h"
# include <pthread.h>
# include <semaphore.h>
# include <time.h>
# include <errno.h>
# include <unistd.h>
# include <sys/mman.h>
# include <sys/time.h>

#undef pthread_create
#undef pthread_sigmask
#undef pthread_join

void GC_thr_init();

#if 0
void GC_print_sig_mask()
{
    sigset_t blocked;
    int i;

    if (pthread_sigmask(SIG_BLOCK, NULL, &blocked) != 0)
    	ABORT("pthread_sigmask");
    GC_printf0("Blocked: ");
    for (i = 1; i <= MAXSIG; i++) {
        if (sigismember(&blocked, i)) { GC_printf1("%ld ",(long) i); }
    }
    GC_printf0("\n");
}
#endif

/* We use the allocation lock to protect thread-related data structures. */

/* The set of all known threads.  We intercept thread creation and 	*/
/* joins.  We never actually create detached threads.  We allocate all 	*/
/* new thread stacks ourselves.  These allow us to maintain this	*/
/* data structure.							*/
/* Protected by GC_thr_lock.						*/
/* Some of this should be declared volatile, but that's incosnsistent	*/
/* with some library routine declarations.  		 		*/
typedef struct GC_Thread_Rep {
    struct GC_Thread_Rep * next;  /* More recently allocated threads	*/
				  /* with a given pthread id come 	*/
				  /* first.  (All but the first are	*/
				  /* guaranteed to be dead, but we may  */
				  /* not yet have registered the join.) */
    pthread_t id;
    word stop;
#	define NOT_STOPPED 0
#	define PLEASE_STOP 1
#	define STOPPED 2
    word flags;
#	define FINISHED 1   	/* Thread has exited.	*/
#	define DETACHED 2	/* Thread is intended to be detached.	*/
#	define CLIENT_OWNS_STACK	4
				/* Stack was supplied by client.	*/
    ptr_t stack;
    ptr_t stack_ptr;  		/* Valid only when stopped. */
				/* But must be within stack region at	*/
				/* all times.				*/
    size_t stack_size;		/* 0 for original thread.	*/
    void * status;		/* Used only to avoid premature 	*/
				/* reclamation of any data it might 	*/
				/* reference.				*/
} * GC_thread;

GC_thread GC_lookup_thread(pthread_t id);

/*
 * The only way to suspend threads given the pthread interface is to send
 * signals.  Unfortunately, this means we have to reserve
 * a signal, and intercept client calls to change the signal mask.
 */
# define SIG_SUSPEND (SIGRTMIN + 6)

pthread_mutex_t GC_suspend_lock = PTHREAD_MUTEX_INITIALIZER;
				/* Number of threads stopped so far	*/
pthread_cond_t GC_suspend_ack_cv = PTHREAD_COND_INITIALIZER;
pthread_cond_t GC_continue_cv = PTHREAD_COND_INITIALIZER;

void GC_suspend_handler(int sig)
{
    int dummy;
    GC_thread me;
    sigset_t all_sigs;
    sigset_t old_sigs;
    int i;

    if (sig != SIG_SUSPEND) ABORT("Bad signal in suspend_handler");
    me = GC_lookup_thread(pthread_self());
    /* The lookup here is safe, since I'm doing this on behalf  */
    /* of a thread which holds the allocation lock in order	*/
    /* to stop the world.  Thus concurrent modification of the	*/
    /* data structure is impossible.				*/
    if (PLEASE_STOP != me -> stop) {
	/* Misdirected signal.	*/
	pthread_mutex_unlock(&GC_suspend_lock);
	return;
    }
    pthread_mutex_lock(&GC_suspend_lock);
    me -> stack_ptr = (ptr_t)(&dummy);
    me -> stop = STOPPED;
    pthread_cond_signal(&GC_suspend_ack_cv);
    pthread_cond_wait(&GC_continue_cv, &GC_suspend_lock);
    pthread_mutex_unlock(&GC_suspend_lock);
    /* GC_printf1("Continuing 0x%x\n", pthread_self()); */
}


GC_bool GC_thr_initialized = FALSE;

size_t GC_min_stack_sz;

size_t GC_page_sz;

# define N_FREE_LISTS 25
ptr_t GC_stack_free_lists[N_FREE_LISTS] = { 0 };
		/* GC_stack_free_lists[i] is free list for stacks of 	*/
		/* size GC_min_stack_sz*2**i.				*/
		/* Free lists are linked through first word.		*/

/* Return a stack of size at least *stack_size.  *stack_size is	*/
/* replaced by the actual stack size.				*/
/* Caller holds allocation lock.				*/
ptr_t GC_stack_alloc(size_t * stack_size)
{
    register size_t requested_sz = *stack_size;
    register size_t search_sz = GC_min_stack_sz;
    register int index = 0;	/* = log2(search_sz/GC_min_stack_sz) */
    register ptr_t result;
    
    while (search_sz < requested_sz) {
        search_sz *= 2;
        index++;
    }
    if ((result = GC_stack_free_lists[index]) == 0
        && (result = GC_stack_free_lists[index+1]) != 0) {
        /* Try next size up. */
        search_sz *= 2; index++;
    }
    if (result != 0) {
        GC_stack_free_lists[index] = *(ptr_t *)result;
    } else {
        result = (ptr_t) GC_scratch_alloc(search_sz + 2*GC_page_sz);
        result = (ptr_t)(((word)result + GC_page_sz) & ~(GC_page_sz - 1));
        /* Protect hottest page to detect overflow. */
        /* mprotect(result, GC_page_sz, PROT_NONE); */
        result += GC_page_sz;
    }
    *stack_size = search_sz;
    return(result);
}

/* Caller holds allocation lock.					*/
void GC_stack_free(ptr_t stack, size_t size)
{
    register int index = 0;
    register size_t search_sz = GC_min_stack_sz;
    
    while (search_sz < size) {
        search_sz *= 2;
        index++;
    }
    if (search_sz != size) ABORT("Bad stack size");
    *(ptr_t *)stack = GC_stack_free_lists[index];
    GC_stack_free_lists[index] = stack;
}



# define THREAD_TABLE_SZ 128	/* Must be power of 2	*/
volatile GC_thread GC_threads[THREAD_TABLE_SZ];

/* Add a thread to GC_threads.  We assume it wasn't already there.	*/
/* Caller holds allocation lock.					*/
GC_thread GC_new_thread(pthread_t id)
{
    int hv = ((word)id) % THREAD_TABLE_SZ;
    GC_thread result;
    static struct GC_Thread_Rep first_thread;
    static GC_bool first_thread_used = FALSE;
    
    if (!first_thread_used) {
    	result = &first_thread;
    	first_thread_used = TRUE;
    	/* Dont acquire allocation lock, since we may already hold it. */
    } else {
        result = (struct GC_Thread_Rep *)
        	 GC_generic_malloc_inner(sizeof(struct GC_Thread_Rep), NORMAL);
    }
    if (result == 0) return(0);
    result -> id = id;
    result -> next = GC_threads[hv];
    GC_threads[hv] = result;
    /* result -> flags = 0;     */
    /* result -> stop = 0;	*/
    return(result);
}

/* Delete a thread from GC_threads.  We assume it is there.	*/
/* (The code intentionally traps if it wasn't.)			*/
/* Caller holds allocation lock.				*/
void GC_delete_thread(pthread_t id)
{
    int hv = ((word)id) % THREAD_TABLE_SZ;
    register GC_thread p = GC_threads[hv];
    register GC_thread prev = 0;
    
    while (!pthread_equal(p -> id, id)) {
        prev = p;
        p = p -> next;
    }
    if (prev == 0) {
        GC_threads[hv] = p -> next;
    } else {
        prev -> next = p -> next;
    }
}

/* If a thread has been joined, but we have not yet		*/
/* been notified, then there may be more than one thread 	*/
/* in the table with the same pthread id.			*/
/* This is OK, but we need a way to delete a specific one.	*/
void GC_delete_gc_thread(pthread_t id, GC_thread gc_id)
{
    int hv = ((word)id) % THREAD_TABLE_SZ;
    register GC_thread p = GC_threads[hv];
    register GC_thread prev = 0;

    while (p != gc_id) {
        prev = p;
        p = p -> next;
    }
    if (prev == 0) {
        GC_threads[hv] = p -> next;
    } else {
        prev -> next = p -> next;
    }
}

/* Return a GC_thread corresponding to a given thread_t.	*/
/* Returns 0 if it's not there.					*/
/* Caller holds  allocation lock or otherwise inhibits 		*/
/* updates.							*/
/* If there is more than one thread with the given id we 	*/
/* return the most recent one.					*/
GC_thread GC_lookup_thread(pthread_t id)
{
    int hv = ((word)id) % THREAD_TABLE_SZ;
    register GC_thread p = GC_threads[hv];
    
    while (p != 0 && !pthread_equal(p -> id, id)) p = p -> next;
    return(p);
}


/* Caller holds allocation lock.	*/
void GC_stop_world()
{
    pthread_t my_thread = pthread_self();
    register int i;
    register GC_thread p;
    register int result;
    struct timespec timeout;
    
    for (i = 0; i < THREAD_TABLE_SZ; i++) {
      for (p = GC_threads[i]; p != 0; p = p -> next) {
        if (p -> id != my_thread) {
            if (p -> flags & FINISHED) {
		p -> stop = STOPPED;
		continue;
	    }
	    p -> stop = PLEASE_STOP;
            result = pthread_kill(p -> id, SIG_SUSPEND);
	    /* GC_printf1("Sent signal to 0x%x\n", p -> id); */
	    switch(result) {
                case ESRCH:
                    /* Not really there anymore.  Possible? */
                    p -> stop = STOPPED;
                    break;
                case 0:
                    break;
                default:
                    ABORT("pthread_kill failed");
            }
        }
      }
    }
    pthread_mutex_lock(&GC_suspend_lock);
    for (i = 0; i < THREAD_TABLE_SZ; i++) {
      for (p = GC_threads[i]; p != 0; p = p -> next) {
        while (p -> id != my_thread && p -> stop != STOPPED) {
	    clock_gettime(CLOCK_REALTIME, &timeout);
            timeout.tv_nsec += 50000000; /* 50 msecs */
            if (timeout.tv_nsec >= 1000000000) {
                timeout.tv_nsec -= 1000000000;
                ++timeout.tv_sec;
            }
            result = pthread_cond_timedwait(&GC_suspend_ack_cv,
					    &GC_suspend_lock,
                                            &timeout);
            if (result == ETIMEDOUT) {
                /* Signal was lost or misdirected.  Try again.      */
                /* Duplicate signals should be benign.              */
                result = pthread_kill(p -> id, SIG_SUSPEND);
	    }
	}
      }
    }
    pthread_mutex_unlock(&GC_suspend_lock);
    /* GC_printf1("World stopped 0x%x\n", pthread_self()); */
}

/* Caller holds allocation lock.	*/
void GC_start_world()
{
    GC_thread p;
    unsigned i;

    /* GC_printf0("World starting\n"); */
    for (i = 0; i < THREAD_TABLE_SZ; i++) {
      for (p = GC_threads[i]; p != 0; p = p -> next) {
	p -> stop = NOT_STOPPED;
      }
    }
    pthread_mutex_lock(&GC_suspend_lock);
    /* All other threads are at pthread_cond_wait in signal handler.	*/
    /* Otherwise we couldn't have acquired the lock.			*/
    pthread_mutex_unlock(&GC_suspend_lock);
    pthread_cond_broadcast(&GC_continue_cv);
}

# ifdef MMAP_STACKS
--> not really supported yet.
int GC_is_thread_stack(ptr_t addr)
{
    register int i;
    register GC_thread p;

    for (i = 0; i < THREAD_TABLE_SZ; i++) {
      for (p = GC_threads[i]; p != 0; p = p -> next) {
        if (p -> stack_size != 0) {
            if (p -> stack <= addr &&
                addr < p -> stack + p -> stack_size)
                   return 1;
       }
      }
    }
    return 0;
}
# endif

/* We hold allocation lock.  We assume the world is stopped.	*/
void GC_push_all_stacks()
{
    register int i;
    register GC_thread p;
    register ptr_t sp = GC_approx_sp();
    register ptr_t lo, hi;
    pthread_t me = pthread_self();
    
    if (!GC_thr_initialized) GC_thr_init();
    /* GC_printf1("Pushing stacks from thread 0x%x\n", me); */
    for (i = 0; i < THREAD_TABLE_SZ; i++) {
      for (p = GC_threads[i]; p != 0; p = p -> next) {
        if (p -> flags & FINISHED) continue;
        if (pthread_equal(p -> id, me)) {
	    lo = GC_approx_sp();
	} else {
	    lo = p -> stack_ptr;
	}
        if (p -> stack_size != 0) {
            hi = p -> stack + p -> stack_size;
        } else {
            /* The original stack. */
            hi = GC_stackbottom;
        }
        GC_push_all_stack(lo, hi);
      }
    }
}


/* We hold the allocation lock.	*/
void GC_thr_init()
{
    GC_thread t;
    struct sigaction act;

    if (GC_thr_initialized) return;
    GC_thr_initialized = TRUE;
    GC_min_stack_sz = HBLKSIZE;
    GC_page_sz = sysconf(_SC_PAGESIZE);
    (void) sigaction(SIG_SUSPEND, 0, &act);
    if (act.sa_handler != SIG_DFL)
    	ABORT("Previously installed SIG_SUSPEND handler");
    /* Install handler.	*/
	act.sa_handler = GC_suspend_handler;
	act.sa_flags = SA_RESTART;
	(void) sigemptyset(&act.sa_mask);
        if (0 != sigaction(SIG_SUSPEND, &act, 0))
	    ABORT("Failed to install SIG_SUSPEND handler");
    /* Add the initial thread, so we can stop it.	*/
      t = GC_new_thread(pthread_self());
      t -> stack_size = 0;
      t -> stack_ptr = (ptr_t)(&t);
      t -> flags = DETACHED;
}

int GC_pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
{
    sigset_t fudged_set;
    
    if (set != NULL && (how == SIG_BLOCK || how == SIG_SETMASK)) {
        fudged_set = *set;
        sigdelset(&fudged_set, SIG_SUSPEND);
        set = &fudged_set;
    }
    return(pthread_sigmask(how, set, oset));
}

struct start_info {
    void *(*start_routine)(void *);
    void *arg;
    word flags;
    ptr_t stack;
    size_t stack_size;
    sem_t registered;   	/* 1 ==> in our thread table, but 	*/
				/* parent hasn't yet noticed.		*/
};

void GC_thread_exit_proc(void *arg)
{
    GC_thread me;

    LOCK();
    me = GC_lookup_thread(pthread_self());
    if (me -> flags & DETACHED) {
    	GC_delete_thread(pthread_self());
    } else {
	me -> flags |= FINISHED;
    }
    UNLOCK();
}

int GC_pthread_join(pthread_t thread, void **retval)
{
    int result;
    GC_thread thread_gc_id;
    
    LOCK();
    thread_gc_id = GC_lookup_thread(thread);
    /* This is guaranteed to be the intended one, since the thread id	*/
    /* cant have been recycled by pthreads.				*/
    UNLOCK();
    result = pthread_join(thread, retval);
    /* Some versions of the Irix pthreads library can erroneously 	*/
    /* return EINTR when the call succeeds.				*/
	if (EINTR == result) result = 0;
    LOCK();
    /* Here the pthread thread id may have been recycled. */
    GC_delete_gc_thread(thread, thread_gc_id);
    UNLOCK();
    return result;
}

void * GC_start_routine(void * arg)
{
    struct start_info * si = arg;
    void * result;
    GC_thread me;
    pthread_t my_pthread;
    void *(*start)(void *);
    void *start_arg;

    my_pthread = pthread_self();
    /* If a GC occurs before the thread is registered, that GC will	*/
    /* ignore this thread.  That's fine, since it will block trying to  */
    /* acquire the allocation lock, and won't yet hold interesting 	*/
    /* pointers.							*/
    LOCK();
    /* We register the thread here instead of in the parent, so that	*/
    /* we don't need to hold the allocation lock during pthread_create. */
    /* Holding the allocation lock there would make REDIRECT_MALLOC	*/
    /* impossible.  It probably still doesn't work, but we're a little  */
    /* closer ...							*/
    /* This unfortunately means that we have to be careful the parent	*/
    /* doesn't try to do a pthread_join before we're registered.	*/
    me = GC_new_thread(my_pthread);
    me -> flags = si -> flags;
    me -> stack = si -> stack;
    me -> stack_size = si -> stack_size;
    me -> stack_ptr = (ptr_t)si -> stack + si -> stack_size - sizeof(word);
    UNLOCK();
    start = si -> start_routine;
    start_arg = si -> arg;
    sem_post(&(si -> registered));
    pthread_cleanup_push(GC_thread_exit_proc, 0);
    result = (*start)(start_arg);
    me -> status = result;
    me -> flags |= FINISHED;
    pthread_cleanup_pop(1);
	/* This involves acquiring the lock, ensuring that we can't exit */
	/* while a collection that thinks we're alive is trying to stop  */
	/* us.								 */
    return(result);
}

int
GC_pthread_create(pthread_t *new_thread,
		  const pthread_attr_t *attr,
                  void *(*start_routine)(void *), void *arg)
{
    int result;
    GC_thread t;
    void * stack;
    size_t stacksize;
    pthread_attr_t new_attr;
    int detachstate;
    word my_flags = 0;
    struct start_info * si = GC_malloc(sizeof(struct start_info)); 
	/* This is otherwise saved only in an area mmapped by the thread */
	/* library, which isn't visible to the collector.		 */

    if (0 == si) return(ENOMEM);
    sem_init(&(si -> registered), 0, 0);
    si -> start_routine = start_routine;
    si -> arg = arg;
    LOCK();
    if (!GC_thr_initialized) GC_thr_init();
    if (NULL == attr) {
        stack = 0;
	(void) pthread_attr_init(&new_attr);
    } else {
        new_attr = *attr;
	pthread_attr_getstackaddr(&new_attr, &stack);
    }
    pthread_attr_getstacksize(&new_attr, &stacksize);
    pthread_attr_getdetachstate(&new_attr, &detachstate);
    if (stacksize < GC_min_stack_sz) ABORT("Stack too small");
    if (0 == stack) {
     	stack = (void *)GC_stack_alloc(&stacksize);
     	if (0 == stack) {
     	    UNLOCK();
     	    return(ENOMEM);
     	}
	pthread_attr_setstackaddr(&new_attr, stack);
    } else {
    	my_flags |= CLIENT_OWNS_STACK;
    }
    if (PTHREAD_CREATE_DETACHED == detachstate) my_flags |= DETACHED;
    si -> flags = my_flags;
    si -> stack = stack;
    si -> stack_size = stacksize;
    result = pthread_create(new_thread, &new_attr, GC_start_routine, si);
    if (0 == new_thread && !(my_flags & CLIENT_OWNS_STACK)) {
      	GC_stack_free(stack, stacksize);
    }        
    UNLOCK();  
    /* Wait until child has been added to the thread table.		*/
    /* This also ensures that we hold onto si until the child is done	*/
    /* with it.  Thus it doesn't matter whether it is otherwise		*/
    /* visible to the collector.					*/
        if (0 != sem_wait(&(si -> registered))) ABORT("sem_wait failed");
        sem_destroy(&(si -> registered));
    /* pthread_attr_destroy(&new_attr); */
    return(result);
}

GC_bool GC_collecting = 0; /* A hint that we're in the collector and       */
                        /* holding the allocation lock for an           */
                        /* extended period.                             */

/* Reasonably fast spin locks.  Basically the same implementation */
/* as STL alloc.h.  This isn't really the right way to do this.   */
/* but until the POSIX scheduling mess gets straightened out ...  */

unsigned long GC_allocate_lock = 0;

#define SLEEP_THRESHOLD 3

void GC_lock()
{
#   define low_spin_max 30  /* spin cycles if we suspect uniprocessor */
#   define high_spin_max 1000 /* spin cycles for multiprocessor */
    static unsigned spin_max = low_spin_max;
    unsigned my_spin_max;
    static unsigned last_spins = 0;
    unsigned my_last_spins;
    volatile unsigned junk;
#   define PAUSE junk *= junk; junk *= junk; junk *= junk; junk *= junk
    int i;

    if (!GC_test_and_set(&GC_allocate_lock, 1)) {
        return;
    }
    junk = 0;
    my_spin_max = spin_max;
    my_last_spins = last_spins;
    for (i = 0; i < my_spin_max; i++) {
        if (GC_collecting) goto yield;
        if (i < my_last_spins/2 || GC_allocate_lock) {
            PAUSE; 
            continue;
        }
        if (!GC_test_and_set(&GC_allocate_lock, 1)) {
	    /*
             * got it!
             * Spinning worked.  Thus we're probably not being scheduled
             * against the other process with which we were contending.
             * Thus it makes sense to spin longer the next time.
	     */
            last_spins = i;
            spin_max = high_spin_max;
            return;
        }
    }
    /* We are probably being scheduled against the other process.  Sleep. */
    spin_max = low_spin_max;
yield:
    for (i = 0;; ++i) {
        if (!GC_test_and_set(&GC_allocate_lock, 1)) {
            return;
        }
        if (i < SLEEP_THRESHOLD) {
            sched_yield();
	} else {
	    struct timespec ts;
	
	    if (i > 26) i = 26;
			/* Don't wait for more than about 60msecs, even	*/
			/* under extreme contention.			*/
	    ts.tv_sec = 0;
	    ts.tv_nsec = 1 << i;
	    nanosleep(&ts, 0);
	}
    }
}



# else

#ifndef LINT
  int GC_no_Irix_threads;
#endif

# endif /* IRIX_THREADS */