DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (47b55c578f95)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* -*- Mode: C; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef _MIMEMSIG_H_
#define _MIMEMSIG_H_

#include "mimemult.h"
#include "mimepbuf.h"
#include "modmimee.h"

/* The MimeMultipartSigned class implements the multipart/signed MIME
   container, which provides a general method of associating a cryptographic
   signature to an arbitrary MIME object.

   The MimeMultipartSigned class provides the following methods:

   void *crypto_init (MimeObject *multipart_object)

     This is called with the object, the object->headers of which should be
   used to initialize the dexlateion engine.  NULL indicates failure;
   otherwise, an opaque closure object should be returned.

   int crypto_data_hash (const char *data, int32_t data_size,
             void *crypto_closure)

     This is called with the raw data, for which a signature has been computed.
   The crypto module should examine this, and compute a signature for it.

   int crypto_data_eof (void *crypto_closure, bool abort_p)

     This is called when no more data remains.  If `abort_p' is true, then the
   crypto module may choose to discard any data rather than processing it,
   as we're terminating abnormally.

   int crypto_signature_init (void *crypto_closure,
                              MimeObject *multipart_object,
                MimeHeaders *signature_hdrs)

     This is called after crypto_data_eof() and just before the first call to
   crypto_signature_hash().  The crypto module may wish to do some
   initialization here, or may wish to examine the actual headers of the
   signature object itself.

   int crypto_signature_hash (const char *data, int32_t data_size,
                void *crypto_closure)

     This is called with the raw data of the detached signature block.  It will
   be called after crypto_data_eof() has been called to signify the end of
   the data which is signed.  This data is the data of the signature itself.

   int crypto_signature_eof (void *crypto_closure, bool abort_p)

     This is called when no more signature data remains.  If `abort_p' is true,
   then the crypto module may choose to discard any data rather than
   processing it, as we're terminating abnormally.

   char * crypto_generate_html (void *crypto_closure)

     This is called after `crypto_signature_eof' but before `crypto_free'.
   The crypto module should return a newly-allocated string of HTML code
   which explains the status of the dexlateion to the user (whether the
   signature checks out, etc.)

   void crypto_free (void *crypto_closure)

     This will be called when we're all done, after `crypto_signature_eof' and
   `crypto_emit_html'.  It is intended to free any data represented by the
   crypto_closure.
 */

typedef struct MimeMultipartSignedClass MimeMultipartSignedClass;
typedef struct MimeMultipartSigned      MimeMultipartSigned;

typedef enum {
  MimeMultipartSignedPreamble,
  MimeMultipartSignedBodyFirstHeader,
  MimeMultipartSignedBodyHeaders,
  MimeMultipartSignedBodyFirstLine,
  MimeMultipartSignedBodyLine,
  MimeMultipartSignedSignatureHeaders,
  MimeMultipartSignedSignatureFirstLine,
  MimeMultipartSignedSignatureLine,
  MimeMultipartSignedEpilogue
} MimeMultipartSignedParseState;

struct MimeMultipartSignedClass {
  MimeMultipartClass multipart;

  /* Callbacks used by dexlateion (really, signature verification) module. */
  void * (*crypto_init) (MimeObject *multipart_object);

  int (*crypto_data_hash)      (const char *data, int32_t data_size,
                void *crypto_closure);
  int (*crypto_signature_hash) (const char *data, int32_t data_size,
                void *crypto_closure);

  int (*crypto_data_eof)      (void *crypto_closure, bool abort_p);
  int (*crypto_signature_eof) (void *crypto_closure, bool abort_p);

  int (*crypto_signature_init) (void *crypto_closure,
                MimeObject *multipart_object,
                MimeHeaders *signature_hdrs);

  char * (*crypto_generate_html) (void *crypto_closure);

  void (*crypto_free) (void *crypto_closure);
};

extern "C" MimeMultipartSignedClass mimeMultipartSignedClass;

struct MimeMultipartSigned {
  MimeMultipart multipart;
  MimeMultipartSignedParseState state;  /* State of parser */

  void *crypto_closure;           /* Opaque data used by signature
                      verification module. */

  MimeHeaders *body_hdrs;        /* The headers of the signed object. */
  MimeHeaders *sig_hdrs;        /* The headers of the signature. */

  MimePartBufferData *part_buffer;      /* The buffered body of the signed
                       object (see mimepbuf.h) */

  MimeDecoderData *sig_decoder_data;  /* The signature is probably base64
                       encoded; this is the decoder used
                       to get raw bits out of it. */
};

#endif /* _MIMEMSIG_H_ */