DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (409f3966645a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "nsRFPService.h"

#include <algorithm>
#include <memory>
#include <time.h>

#include "mozilla/ClearOnShutdown.h"
#include "mozilla/dom/Element.h"
#include "mozilla/Logging.h"
#include "mozilla/Mutex.h"
#include "mozilla/Preferences.h"
#include "mozilla/Services.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/TextEvents.h"
#include "mozilla/dom/KeyboardEventBinding.h"

#include "nsCOMPtr.h"
#include "nsCoord.h"
#include "nsServiceManagerUtils.h"
#include "nsString.h"
#include "nsXULAppAPI.h"
#include "nsPrintfCString.h"

#include "nsICryptoHash.h"
#include "nsIObserverService.h"
#include "nsIPrefBranch.h"
#include "nsIPrefService.h"
#include "nsIRandomGenerator.h"
#include "nsIXULAppInfo.h"
#include "nsIXULRuntime.h"
#include "nsJSUtils.h"

#include "prenv.h"
#include "nss.h"

#include "js/Date.h"

using namespace mozilla;
using namespace std;

static mozilla::LazyLogModule gResistFingerprintingLog("nsResistFingerprinting");

#define RESIST_FINGERPRINTING_PREF "privacy.resistFingerprinting"
#define RFP_TIMER_PREF "privacy.reduceTimerPrecision"
#define RFP_TIMER_VALUE_PREF "privacy.resistFingerprinting.reduceTimerPrecision.microseconds"
#define RFP_TIMER_VALUE_DEFAULT 1000
#define RFP_JITTER_VALUE_PREF "privacy.resistFingerprinting.reduceTimerPrecision.jitter"
#define RFP_JITTER_VALUE_DEFAULT true
#define RFP_SPOOFED_FRAMES_PER_SEC_PREF "privacy.resistFingerprinting.video_frames_per_sec"
#define RFP_SPOOFED_DROPPED_RATIO_PREF  "privacy.resistFingerprinting.video_dropped_ratio"
#define RFP_TARGET_VIDEO_RES_PREF "privacy.resistFingerprinting.target_video_res"
#define RFP_SPOOFED_FRAMES_PER_SEC_DEFAULT 30
#define RFP_SPOOFED_DROPPED_RATIO_DEFAULT  5
#define RFP_TARGET_VIDEO_RES_DEFAULT 480
#define PROFILE_INITIALIZED_TOPIC "profile-initial-state"

#define RFP_DEFAULT_SPOOFING_KEYBOARD_LANG KeyboardLang::EN
#define RFP_DEFAULT_SPOOFING_KEYBOARD_REGION KeyboardRegion::US

NS_IMPL_ISUPPORTS(nsRFPService, nsIObserver)

/*
 * The below variables are marked with 'Relaxed' memory ordering. We don't
 * particurally care that threads have a percently consistent view of the values
 * of these prefs. They are not expected to change often, and having an outdated
 * view is not particurally harmful. They will eventually become consistent.
 *
 * The variables will, however, be read often (specifically sResolutionUSec on
 * each timer rounding) so performance is important.
 */

static StaticRefPtr<nsRFPService> sRFPService;
static bool sInitialized = false;
Atomic<bool, Relaxed> nsRFPService::sPrivacyResistFingerprinting;
Atomic<bool, Relaxed> nsRFPService::sPrivacyTimerPrecisionReduction;
// Note: anytime you want to use this variable, you should probably use TimerResolution() instead
Atomic<uint32_t, Relaxed> sResolutionUSec;
Atomic<bool, Relaxed> sJitter;
static uint32_t sVideoFramesPerSec;
static uint32_t sVideoDroppedRatio;
static uint32_t sTargetVideoRes;
nsDataHashtable<KeyboardHashKey, const SpoofingKeyboardCode*>*
  nsRFPService::sSpoofingKeyboardCodes = nullptr;
static mozilla::StaticMutex sLock;

/* static */
nsRFPService*
nsRFPService::GetOrCreate()
{
  if (!sInitialized) {
    sRFPService = new nsRFPService();
    nsresult rv = sRFPService->Init();

    if (NS_FAILED(rv)) {
      sRFPService = nullptr;
      return nullptr;
    }

    ClearOnShutdown(&sRFPService);
    sInitialized = true;
  }

  return sRFPService;
}

/* static */
double
nsRFPService::TimerResolution()
{
  if(nsRFPService::IsResistFingerprintingEnabled()) {
    return max(100000.0, (double)sResolutionUSec);
  }
  return sResolutionUSec;
}

/* static */
bool
nsRFPService::IsResistFingerprintingEnabled()
{
  return sPrivacyResistFingerprinting;
}

/* static */
bool
nsRFPService::IsTimerPrecisionReductionEnabled(TimerPrecisionType aType)
{
  if (aType == TimerPrecisionType::RFPOnly) {
    return IsResistFingerprintingEnabled();
  }

  return (sPrivacyTimerPrecisionReduction || IsResistFingerprintingEnabled()) &&
         TimerResolution() > 0;
}

/*
 * The below is a simple time-based Least Recently Used cache used to store the
 * result of a cryptographic hash function. It has LRU_CACHE_SIZE slots, and will
 * be used from multiple threads. It is thread-safe.
 */
#define LRU_CACHE_SIZE         (45)
#define HASH_DIGEST_SIZE_BITS  (256)
#define HASH_DIGEST_SIZE_BYTES (HASH_DIGEST_SIZE_BITS / 8)

class LRUCache final
{
public:
  LRUCache()
    : mLock("mozilla.resistFingerprinting.LRUCache")
  {
    this->cache.SetLength(LRU_CACHE_SIZE);
  }

  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(LRUCache)

  nsCString
  Get(long long aKeyPart1, long long aKeyPart2)
  {
    for (auto & cacheEntry : this->cache) {
      // Read optimistically befor locking
      if (cacheEntry.keyPart1 == aKeyPart1 &&
          cacheEntry.keyPart2 == aKeyPart2) {
        MutexAutoLock lock(mLock);

        // Double check after we have a lock
        if (MOZ_UNLIKELY(cacheEntry.keyPart1 != aKeyPart1 ||
                         cacheEntry.keyPart2 != aKeyPart2)) {
          // Got evicted in a race
          long long tmp_keyPart1 = cacheEntry.keyPart1;
          long long tmp_keyPart2 = cacheEntry.keyPart2;
          MOZ_LOG(gResistFingerprintingLog, LogLevel::Verbose,
            ("LRU Cache HIT-MISS with %lli != %lli and %lli != %lli",
              aKeyPart1, tmp_keyPart1, aKeyPart2, tmp_keyPart2));
          return EmptyCString();
        }

        cacheEntry.accessTime = PR_Now();
        MOZ_LOG(gResistFingerprintingLog, LogLevel::Verbose,
          ("LRU Cache HIT with %lli %lli", aKeyPart1, aKeyPart2));
        return cacheEntry.data;
      }
    }

    return EmptyCString();
  }

  void
  Store(long long aKeyPart1, long long aKeyPart2, const nsCString& aValue)
  {
    MOZ_DIAGNOSTIC_ASSERT(aValue.Length() == HASH_DIGEST_SIZE_BYTES);
    MutexAutoLock lock(mLock);

    CacheEntry* lowestKey = &this->cache[0];
    for (auto & cacheEntry : this->cache) {
      if (MOZ_UNLIKELY(cacheEntry.keyPart1 == aKeyPart1 &&
                       cacheEntry.keyPart2 == aKeyPart2)) {
        // Another thread inserted before us, don't insert twice
        MOZ_LOG(gResistFingerprintingLog, LogLevel::Verbose,
          ("LRU Cache DOUBLE STORE with %lli %lli", aKeyPart1, aKeyPart2));
        return;
      }
      if (cacheEntry.accessTime < lowestKey->accessTime) {
        lowestKey = &cacheEntry;
      }
    }

    lowestKey->keyPart1 = aKeyPart1;
    lowestKey->keyPart2 = aKeyPart2;
    lowestKey->data = aValue;
    lowestKey->accessTime = PR_Now();
    MOZ_LOG(gResistFingerprintingLog, LogLevel::Verbose,
      ("LRU Cache STORE with %lli %lli", aKeyPart1, aKeyPart2));
  }


private:
  ~LRUCache() = default;

  struct CacheEntry
  {
    Atomic<long long, Relaxed> keyPart1;
    Atomic<long long, Relaxed> keyPart2;
    PRTime accessTime = 0;
    nsCString data;

    CacheEntry()
    {
      this->keyPart1 = 0xFFFFFFFFFFFFFFFF;
      this->keyPart2 = 0xFFFFFFFFFFFFFFFF;
      this->accessTime = 0;
      this->data = nullptr;
    }
    CacheEntry(const CacheEntry &obj)
    {
      this->keyPart1.exchange(obj.keyPart1);
      this->keyPart2.exchange(obj.keyPart2);
      this->accessTime = obj.accessTime;
      this->data = obj.data;
    }
  };

  AutoTArray<CacheEntry, LRU_CACHE_SIZE> cache;
  mozilla::Mutex mLock;
};

// We make a single LRUCache
static StaticRefPtr<LRUCache> sCache;

/**
 * The purpose of this function is to deterministicly generate a random midpoint
 * between a lower clamped value and an upper clamped value. Assuming a clamping
 * resolution of 100, here is an example:
 *
 * |---------------------------------------|--------------------------|
 * lower clamped value (e.g. 300)          |           upper clamped value (400)
 *                              random midpoint (e.g. 360)
 *
 * If our actual timestamp (e.g. 325) is below the midpoint, we keep it clamped
 * downwards. If it were equal to or above the midpoint (e.g. 365) we would
 * round it upwards to the largest clamped value (in this example: 400).
 *
 * The question is: does time go backwards?
 *
 * The midpoint is deterministicly random and generated from three components:
 * a secret seed, a per-timeline (context) 'mix-in', and a clamped time.
 *
 * When comparing times across different seed values: time may go backwards.
 * For a clamped time of 300, one seed may generate a midpoint of 305 and another
 * 395. So comparing an (actual) timestamp of 325 and 351 could see the 325 clamped
 * up to 400 and the 351 clamped down to 300. The seed is per-process, so this case
 * occurs when one can compare timestamps cross-process. This is uncommon (because
 * we don't have site isolation.) The circumstances this could occur are
 * BroadcastChannel, Storage Notification, and in theory (but not yet implemented)
 * SharedWorker. This should be an exhaustive list (at time of comment writing!).
 *
 * Aside from cross-process communication, derived timestamps across different
 * time origins may go backwards. (Specifically, derived means adding two timestamps
 * together to get an (approximate) absolute time.)
 * Assume a page and a worker. If one calls performance.now() in the page and then
 * triggers a call to performance.now() in the worker, the following invariant should
 * hold true:
 *             page.performance.timeOrigin + page.performance.now() <
 *                        worker.performance.timeOrigin + worker.performance.now()
 *
 * We break this invariant.
 *
 * The 'Context Mix-in' is a securely generated random seed that is unique for each
 * timeline that starts over at zero. It is needed to ensure that the sequence of
 * midpoints (as calculated by the secret seed and clamped time) does not repeat.
 * In RelativeTimeline.h, we define a 'RelativeTimeline' class that can be inherited by
 * any object that has a relative timeline. The most obvious examples are Documents
 * and Workers. An attacker could let time go forward and observe (roughly) where
 * the random midpoints fall. Then they create a new object, time starts back over at
 * zero, and they know (approximately) where the random midpoints are.
 *
 * When the timestamp given is a non-relative timestamp (e.g. it is relative to the
 * unix epoch) it is not possible to replay a sequence of random values. Thus,
 * providing a zero context pointer is an indicator that the timestamp given is
 * absolute and does not need any additional randomness.
 *
 * @param aClampedTimeUSec [in]  The clamped input time in microseconds.
 * @param aResolutionUSec  [in]  The current resolution for clamping in microseconds.
 * @param aMidpointOut     [out] The midpoint, in microseconds, between [0, aResolutionUSec].
 * @param aContextMixin    [in]  An opaque random value for relative timestamps. 0 for
 *                               absolute timestamps
 * @param aSecretSeed      [in]  TESTING ONLY. When provided, the current seed will be
 *                               replaced with this value.
 * @return                 A nsresult indicating success of failure. If the function failed,
 *                         nothing is written to aMidpointOut
 */

/* static */
nsresult
nsRFPService::RandomMidpoint(long long aClampedTimeUSec,
                             long long aResolutionUSec,
                             int64_t aContextMixin,
                             long long* aMidpointOut,
                             uint8_t * aSecretSeed /* = nullptr */)
{
  nsresult rv;
  const int kSeedSize = 16;
  const int kClampTimesPerDigest = HASH_DIGEST_SIZE_BITS / 32;
  static uint8_t * sSecretMidpointSeed = nullptr;

  if(MOZ_UNLIKELY(!aMidpointOut)) {
    return NS_ERROR_INVALID_ARG;
  }

  RefPtr<LRUCache> cache;
  {
    StaticMutexAutoLock lock(sLock);
    cache = sCache;
  }

  if(!cache) {
    return NS_ERROR_FAILURE;
  }

  /*
   * Below, we will call a cryptographic hash function. That's expensive. We look for ways to
   * make it more efficient.
   *
   * We only need as much output from the hash function as the maximum resolution we will
   * ever support, because we will reduce the output modulo that value. The maximum resolution
   * we think is likely is in the low seconds value, or about 1-10 million microseconds.
   * 2**24 is 16 million, so we only need 24 bits of output. Practically speaking though,
   * it's way easier to work with 32 bits.
   *
   * So we're using 32 bits of output and throwing away the other DIGEST_SIZE - 32 (in the case of
   * SHA-256, DIGEST_SIZE is 256.)  That's a lot of waste.
   *
   * Instead of throwing it away, we're going to use all of it. We can handle DIGEST_SIZE / 32
   * Clamped Time's per hash function - call that , so we reduce aClampedTime to a multiple of
   * kClampTimesPerDigest (just like we reduced the real time value to aClampedTime!)
   *
   * Then we hash _that_ value (assuming it's not in the cache) and index into the digest result
   * the appropriate bit offset.
   */
  long long reducedResolution = aResolutionUSec * kClampTimesPerDigest;
  long long extraClampedTime = (aClampedTimeUSec / reducedResolution) * reducedResolution;

  nsCString hashResult = cache->Get(extraClampedTime, aContextMixin);

  if(hashResult.Length() != HASH_DIGEST_SIZE_BYTES) { // Cache Miss =(
    // If someone has pased in the testing-only parameter, replace our seed with it
    if (aSecretSeed != nullptr) {
      StaticMutexAutoLock lock(sLock);
      if (sSecretMidpointSeed) {
        delete[] sSecretMidpointSeed;
      }
      sSecretMidpointSeed = new uint8_t[kSeedSize];
      memcpy(sSecretMidpointSeed, aSecretSeed, kSeedSize);
    }

    // If we don't have a seed, we need to get one.
    if(MOZ_UNLIKELY(!sSecretMidpointSeed)) {
      nsCOMPtr<nsIRandomGenerator> randomGenerator =
        do_GetService("@mozilla.org/security/random-generator;1", &rv);
      if (NS_WARN_IF(NS_FAILED(rv))) { return rv; }

      StaticMutexAutoLock lock(sLock);
      if(MOZ_LIKELY(!sSecretMidpointSeed)) {
        rv = randomGenerator->GenerateRandomBytes(kSeedSize, &sSecretMidpointSeed);
        if (NS_WARN_IF(NS_FAILED(rv))) { return rv; }
      }
    }

    /*
     * Use a cryptographicly secure hash function, but do _not_ use an HMAC.
     * Obviously we're not using this data for authentication purposes, but
     * even still an HMAC is a perfect fit here, as we're hashing a value
     * using a seed that never changes, and an input that does. So why not
     * use one?
     *
     * Basically - we don't need to, it's two invocations of the hash function,
     * and speed really counts here.
     *
     * With authentication off the table, the properties we would get by
     * using an HMAC here would be:
     *  - Resistence to length extension
     *  - Resistence to collision attacks on the underlying hash function
     *  - Resistence to chosen prefix attacks
     *
     * There is no threat of length extension here. Nor is there any real
     * practical threat of collision: not only are we using a good hash
     * function (you may mock me in 10 years if it is broken) but we don't
     * provide the attacker much control over the input. Nor do we let them
     * have the prefix.
     */

     // Then hash extraClampedTime and store it in the cache
     nsCOMPtr<nsICryptoHash> hasher = do_CreateInstance("@mozilla.org/security/hash;1", &rv);
     NS_ENSURE_SUCCESS(rv, rv);

     rv = hasher->Init(nsICryptoHash::SHA256);
     NS_ENSURE_SUCCESS(rv, rv);

     rv = hasher->Update(sSecretMidpointSeed, kSeedSize);
     NS_ENSURE_SUCCESS(rv, rv);

     rv = hasher->Update((const uint8_t *)&aContextMixin, sizeof(aContextMixin));
     NS_ENSURE_SUCCESS(rv, rv);

     rv = hasher->Update((const uint8_t *)&extraClampedTime, sizeof(extraClampedTime));
     NS_ENSURE_SUCCESS(rv, rv);

     nsAutoCStringN<HASH_DIGEST_SIZE_BYTES> derivedSecret;
     rv = hasher->Finish(false, derivedSecret);
     NS_ENSURE_SUCCESS(rv, rv);

     // Finally, store it in the cache
     cache->Store(extraClampedTime, aContextMixin, derivedSecret);
     hashResult = derivedSecret;
  }

  // Offset the appropriate index into the hash output, and then turn it into a random midpoint
  // between 0 and aResolutionUSec. Sometimes out input time is negative, we ride the negative
  // out to the end until we start doing pointer math. (We also triple check we're in bounds.)
  int byteOffset = abs(((aClampedTimeUSec - extraClampedTime) / aResolutionUSec) * 4);
  if (MOZ_UNLIKELY(byteOffset > (HASH_DIGEST_SIZE_BYTES - 4))) {
    byteOffset = 0;
  }
  uint32_t deterministiclyRandomValue = *BitwiseCast<uint32_t*>(PromiseFlatCString(hashResult).get() + byteOffset);
  deterministiclyRandomValue %= aResolutionUSec;
  *aMidpointOut = deterministiclyRandomValue;

  return NS_OK;
}


/**
 * Given a precision value, this function will reduce a given input time to the nearest
 * multiple of that precision.
 *
 * It will check if it is appropriate to clamp the input time according to the values
 * of the privacy.resistFingerprinting and privacy.reduceTimerPrecision preferences.
 * Note that while it will check these prefs, it will use whatever precision is given to
 * it, so if one desires a minimum precision for Resist Fingerprinting, it is the
 * caller's responsibility to provide the correct value. This means you should pass
 * TimerResolution(), which enforces a minimum vale on the precision based on
 * preferences.
 *
 * It ensures the given precision value is greater than zero, if it is not it returns
 * the input time.
 *
 * @param aTime           [in] The input time to be clamped.
 * @param aTimeScale      [in] The units the input time is in (Seconds, Milliseconds, or Microseconds).
 * @param aResolutionUSec [in] The precision (in microseconds) to clamp to.
 * @param aContextMixin   [in] An opaque random value for relative timestamps. 0 for absolute timestamps
 * @return                 If clamping is appropriate, the clamped value of the input, otherwise the input.
 */
/* static */
double
nsRFPService::ReduceTimePrecisionImpl(
  double aTime,
  TimeScale aTimeScale,
  double aResolutionUSec,
  int64_t aContextMixin,
  TimerPrecisionType aType)
 {
   if (!IsTimerPrecisionReductionEnabled(aType) || aResolutionUSec <= 0) {
     return aTime;
   }

  // Increase the time as needed until it is in microseconds.
  // Note that a double can hold up to 2**53 with integer precision. This gives us
  // only until June 5, 2255 in time-since-the-epoch with integer precision.
  // So we will be losing microseconds precision after that date.
  // We think this is okay, and we codify it in some tests.
  double timeScaled = aTime * (1000000 / aTimeScale);
  // Cut off anything less than a microsecond.
  long long timeAsInt = timeScaled;

  // If we have a blank context mixin, this indicates we (should) have an absolute timestamp.
  // We check the time, and if it less than a unix timestamp about 10 years in the past, we
  // output to the log and, in debug builds, assert. This is an error case we want to
  // understand and fix: we must have given a relative timestamp with a mixin of 0 which is
  // incorrect.
  // Anyone running a debug build _probably_ has an accurate clock, and if they don't, they'll
  // hopefully find this message and understand why things are crashing.
  if (aContextMixin == 0 && aType == TimerPrecisionType::All && timeAsInt < 1204233985000) {
    MOZ_LOG(gResistFingerprintingLog, LogLevel::Error,
      ("About to assert. aTime=%lli<1204233985000 aContextMixin=%" PRId64 " aType=%s",
        timeAsInt, aContextMixin, (aType == TimerPrecisionType::RFPOnly ? "RFPOnly" : "All")));
    MOZ_ASSERT(false, "ReduceTimePrecisionImpl was given a relative time "
                      "with an empty context mix-in (or your clock is 10+ years off.) "
                      "Run this with MOZ_LOG=nsResistFingerprinting:1 to get more details.");
}

  // Cast the resolution (in microseconds) to an int.
  long long resolutionAsInt = aResolutionUSec;
  // Perform the clamping.
  // We do a cast back to double to perform the division with doubles, then floor the result
  // and the rest occurs with integer precision.
  // This is because it gives consistency above and below zero. Above zero, performing the
  // division in integers truncates decimals, taking the result closer to zero (a floor).
  // Below zero, performing the division in integers truncates decimals, taking the result
  // closer to zero (a ceil).
  // The impact of this is that comparing two clamped values that should be related by a
  // constant (e.g. 10s) that are across the zero barrier will no longer work. We need to
  // round consistently towards positive infinity or negative infinity (we chose negative.)
  // This can't be done with a truncation, it must be done with floor.
  long long clamped = floor(double(timeAsInt) / resolutionAsInt) * resolutionAsInt;


  long long midpoint = 0,
            clampedAndJittered = clamped;
  if (sJitter) {
    if(!NS_FAILED(RandomMidpoint(clamped, resolutionAsInt, aContextMixin, &midpoint)) &&
       timeAsInt >= clamped + midpoint) {
      clampedAndJittered += resolutionAsInt;
    }
  }

  // Cast it back to a double and reduce it to the correct units.
  double ret = double(clampedAndJittered) / (1000000.0 / aTimeScale);

  bool tmp_jitter = sJitter;
  MOZ_LOG(gResistFingerprintingLog, LogLevel::Verbose,
    ("Given: (%.*f, Scaled: %.*f, Converted: %lli), Rounding with (%lli, Originally %.*f), "
    "Intermediate: (%lli), Clamped: (%lli) Jitter: (%i Context: %" PRId64 " Midpoint: %lli) "
    "Final: (%lli Converted: %.*f)",
     DBL_DIG-1, aTime, DBL_DIG-1, timeScaled, timeAsInt, resolutionAsInt, DBL_DIG-1, aResolutionUSec,
    (long long)floor(double(timeAsInt) / resolutionAsInt), clamped, tmp_jitter, aContextMixin, midpoint,
    clampedAndJittered, DBL_DIG-1, ret));

  return ret;
}

/* static */
double
nsRFPService::ReduceTimePrecisionAsUSecs(
  double aTime,
  int64_t aContextMixin,
  TimerPrecisionType aType /* = TimerPrecisionType::All */)
{
  return nsRFPService::ReduceTimePrecisionImpl(
    aTime,
    MicroSeconds,
    TimerResolution(),
    aContextMixin,
    aType);
}

/* static */
double
nsRFPService::ReduceTimePrecisionAsUSecsWrapper(double aTime)
{
  return nsRFPService::ReduceTimePrecisionImpl(
    aTime,
    MicroSeconds,
    TimerResolution(),
    0, /* For absolute timestamps (all the JS engine does), supply zero context mixin */
    TimerPrecisionType::All);
}

/* static */
double
nsRFPService::ReduceTimePrecisionAsMSecs(
  double aTime,
  int64_t aContextMixin,
  TimerPrecisionType aType /* = TimerPrecisionType::All */)
{
  return nsRFPService::ReduceTimePrecisionImpl(
    aTime,
    MilliSeconds,
    TimerResolution(),
    aContextMixin,
    aType);
}

/* static */
double
nsRFPService::ReduceTimePrecisionAsSecs(
  double aTime,
  int64_t aContextMixin,
  TimerPrecisionType aType /* = TimerPrecisionType::All */)
{
  return nsRFPService::ReduceTimePrecisionImpl(
    aTime,
    Seconds,
    TimerResolution(),
    aContextMixin,
    aType);
}

/* static */
uint32_t
nsRFPService::CalculateTargetVideoResolution(uint32_t aVideoQuality)
{
  return aVideoQuality * NSToIntCeil(aVideoQuality * 16 / 9.0);
}

/* static */
uint32_t
nsRFPService::GetSpoofedTotalFrames(double aTime)
{
  double precision = TimerResolution() / 1000 / 1000;
  double time = floor(aTime / precision) * precision;

  return NSToIntFloor(time * sVideoFramesPerSec);
}

/* static */
uint32_t
nsRFPService::GetSpoofedDroppedFrames(double aTime, uint32_t aWidth, uint32_t aHeight)
{
  uint32_t targetRes = CalculateTargetVideoResolution(sTargetVideoRes);

  // The video resolution is less than or equal to the target resolution, we
  // report a zero dropped rate for this case.
  if (targetRes >= aWidth * aHeight) {
    return 0;
  }

  double precision = TimerResolution() / 1000 / 1000;
  double time = floor(aTime / precision) * precision;
  // Bound the dropped ratio from 0 to 100.
  uint32_t boundedDroppedRatio = min(sVideoDroppedRatio, 100u);

  return NSToIntFloor(time * sVideoFramesPerSec * (boundedDroppedRatio / 100.0));
}

/* static */
uint32_t
nsRFPService::GetSpoofedPresentedFrames(double aTime, uint32_t aWidth, uint32_t aHeight)
{
  uint32_t targetRes = CalculateTargetVideoResolution(sTargetVideoRes);

  // The target resolution is greater than the current resolution. For this case,
  // there will be no dropped frames, so we report total frames directly.
  if (targetRes >= aWidth * aHeight) {
    return GetSpoofedTotalFrames(aTime);
  }

  double precision = TimerResolution() / 1000 / 1000;
  double time = floor(aTime / precision) * precision;
  // Bound the dropped ratio from 0 to 100.
  uint32_t boundedDroppedRatio = min(sVideoDroppedRatio, 100u);

  return NSToIntFloor(time * sVideoFramesPerSec * ((100 - boundedDroppedRatio) / 100.0));
}

/* static */
nsresult
nsRFPService::GetSpoofedUserAgent(nsACString &userAgent)
{
  // This function generates the spoofed value of User Agent.
  // We spoof the values of the platform and Firefox version, which could be
  // used as fingerprinting sources to identify individuals.
  // Reference of the format of User Agent:
  // https://developer.mozilla.org/en-US/docs/Web/API/NavigatorID/userAgent
  // https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent

  nsresult rv;
  nsCOMPtr<nsIXULAppInfo> appInfo =
    do_GetService("@mozilla.org/xre/app-info;1", &rv);
  NS_ENSURE_SUCCESS(rv, rv);

  nsAutoCString appVersion;
  rv = appInfo->GetVersion(appVersion);
  NS_ENSURE_SUCCESS(rv, rv);

  // The browser version will be spoofed as the last ESR version.
  // By doing so, the anonymity group will cover more versions instead of one
  // version.
  uint32_t firefoxVersion = appVersion.ToInteger(&rv);
  NS_ENSURE_SUCCESS(rv, rv);

  // If we are running in Firefox ESR, determine whether the formula of ESR
  // version has changed.  Once changed, we must update the formula in this
  // function.
  if (!strcmp(NS_STRINGIFY(MOZ_UPDATE_CHANNEL), "esr")) {
    MOZ_ASSERT(((firefoxVersion % 7) == 4),
      "Please udpate ESR version formula in nsRFPService.cpp");
  }

  // Starting from Firefox 10, Firefox ESR was released once every seven
  // Firefox releases, e.g. Firefox 10, 17, 24, 31, and so on.
  // Except we used 60 as an ESR instead of 59.
  // We infer the last and closest ESR version based on this rule.
  uint32_t spoofedVersion = firefoxVersion - ((firefoxVersion - 4) % 7);
  userAgent.Assign(nsPrintfCString(
    "Mozilla/5.0 (%s; rv:%d.0) Gecko/%s Firefox/%d.0",
    SPOOFED_UA_OS, spoofedVersion, LEGACY_BUILD_ID, spoofedVersion));

  return rv;
}

static const char* gCallbackPrefs[] = {
  RESIST_FINGERPRINTING_PREF,
  RFP_TIMER_PREF,
  RFP_TIMER_VALUE_PREF,
  RFP_JITTER_VALUE_PREF,
  nullptr,
};

nsresult
nsRFPService::Init()
{
  MOZ_ASSERT(NS_IsMainThread());

  nsresult rv;

  nsCOMPtr<nsIObserverService> obs = mozilla::services::GetObserverService();
  NS_ENSURE_TRUE(obs, NS_ERROR_NOT_AVAILABLE);

  rv = obs->AddObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID, false);
  NS_ENSURE_SUCCESS(rv, rv);

#if defined(XP_WIN)
  rv = obs->AddObserver(this, PROFILE_INITIALIZED_TOPIC, false);
  NS_ENSURE_SUCCESS(rv, rv);
#endif

  Preferences::RegisterCallbacks(PREF_CHANGE_METHOD(nsRFPService::PrefChanged),
                                 gCallbackPrefs, this);

  Preferences::AddAtomicBoolVarCache(&sPrivacyTimerPrecisionReduction,
                                     RFP_TIMER_PREF,
                                     true);

  Preferences::AddAtomicUintVarCache(&sResolutionUSec,
                                     RFP_TIMER_VALUE_PREF,
                                     RFP_TIMER_VALUE_DEFAULT);
  Preferences::AddAtomicBoolVarCache(&sJitter,
                                     RFP_JITTER_VALUE_PREF,
                                     RFP_JITTER_VALUE_DEFAULT);
  Preferences::AddUintVarCache(&sVideoFramesPerSec,
                               RFP_SPOOFED_FRAMES_PER_SEC_PREF,
                               RFP_SPOOFED_FRAMES_PER_SEC_DEFAULT);
  Preferences::AddUintVarCache(&sVideoDroppedRatio,
                               RFP_SPOOFED_DROPPED_RATIO_PREF,
                               RFP_SPOOFED_DROPPED_RATIO_DEFAULT);
  Preferences::AddUintVarCache(&sTargetVideoRes,
                               RFP_TARGET_VIDEO_RES_PREF,
                               RFP_TARGET_VIDEO_RES_DEFAULT);

  // We backup the original TZ value here.
  const char* tzValue = PR_GetEnv("TZ");
  if (tzValue) {
    mInitialTZValue = nsCString(tzValue);
  }

  // Call Update here to cache the values of the prefs and set the timezone.
  UpdateRFPPref();

  // Create the LRU Cache when we initialize, to avoid accidently trying to
  // create it (and call ClearOnShutdown) on a non-main-thread
  if(!sCache) {
    sCache = new LRUCache();
  }

  return rv;
}

// This function updates only timing-related fingerprinting items
void
nsRFPService::UpdateTimers() {
  MOZ_ASSERT(NS_IsMainThread());

  if (sPrivacyResistFingerprinting || sPrivacyTimerPrecisionReduction) {
    JS::SetTimeResolutionUsec(TimerResolution(), sJitter);
    JS::SetReduceMicrosecondTimePrecisionCallback(nsRFPService::ReduceTimePrecisionAsUSecsWrapper);
  } else if (sInitialized) {
    JS::SetTimeResolutionUsec(0, false);
  }
}


// This function updates every fingerprinting item necessary except timing-related
void
nsRFPService::UpdateRFPPref()
{
  MOZ_ASSERT(NS_IsMainThread());
  sPrivacyResistFingerprinting = Preferences::GetBool(RESIST_FINGERPRINTING_PREF);

  UpdateTimers();

  if (sPrivacyResistFingerprinting) {
    PR_SetEnv("TZ=UTC");
  } else if (sInitialized) {
    // We will not touch the TZ value if 'privacy.resistFingerprinting' is false during
    // the time of initialization.
    if (!mInitialTZValue.IsEmpty()) {
      nsAutoCString tzValue = NS_LITERAL_CSTRING("TZ=") + mInitialTZValue;
      static char* tz = nullptr;

      // If the tz has been set before, we free it first since it will be allocated
      // a new value later.
      if (tz) {
        free(tz);
      }
      // PR_SetEnv() needs the input string been leaked intentionally, so
      // we copy it here.
      tz = ToNewCString(tzValue);
      if (tz) {
        PR_SetEnv(tz);
      }
    } else {
#if defined(XP_WIN)
      // For Windows, we reset the TZ to an empty string. This will make Windows to use
      // its system timezone.
      PR_SetEnv("TZ=");
#else
      // For POSIX like system, we reset the TZ to the /etc/localtime, which is the
      // system timezone.
      PR_SetEnv("TZ=:/etc/localtime");
#endif
    }
  }

  // localtime_r (and other functions) may not call tzset, so do this here after
  // changing TZ to ensure all <time.h> functions use the new time zone.
#if defined(XP_WIN)
  _tzset();
#else
  tzset();
#endif

  nsJSUtils::ResetTimeZone();
}

void
nsRFPService::StartShutdown()
{
  MOZ_ASSERT(NS_IsMainThread());

  nsCOMPtr<nsIObserverService> obs = mozilla::services::GetObserverService();

  StaticMutexAutoLock lock(sLock);
  {
    sCache = nullptr;
  }

  if (obs) {
    obs->RemoveObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID);
  }
  Preferences::UnregisterCallbacks(PREF_CHANGE_METHOD(nsRFPService::PrefChanged),
                                   gCallbackPrefs, this);
}

/* static */
void
nsRFPService::MaybeCreateSpoofingKeyCodes(const KeyboardLangs aLang,
                                          const KeyboardRegions aRegion)
{
  if (!sSpoofingKeyboardCodes) {
    sSpoofingKeyboardCodes =
      new nsDataHashtable<KeyboardHashKey, const SpoofingKeyboardCode*>();
  }

  if (KeyboardLang::EN == aLang) {
    switch (aRegion) {
      case KeyboardRegion::US:
        MaybeCreateSpoofingKeyCodesForEnUS();
        break;
    }
  }
}

/* static */
void
nsRFPService::MaybeCreateSpoofingKeyCodesForEnUS()
{
  MOZ_ASSERT(sSpoofingKeyboardCodes);

  static bool sInitialized = false;
  const KeyboardLangs lang = KeyboardLang::EN;
  const KeyboardRegions reg = KeyboardRegion::US;

  if (sInitialized) {
    return;
  }

  static const SpoofingKeyboardInfo spoofingKeyboardInfoTable[] = {
#define KEY(key_, _codeNameIdx, _keyCode, _modifier) \
    { KEY_NAME_INDEX_USE_STRING, NS_LITERAL_STRING(key_), \
      { CODE_NAME_INDEX_##_codeNameIdx, _keyCode, _modifier } },
#define CONTROL(keyNameIdx_, _codeNameIdx, _keyCode) \
    { KEY_NAME_INDEX_##keyNameIdx_, EmptyString(), \
      { CODE_NAME_INDEX_##_codeNameIdx, _keyCode, MODIFIER_NONE } },
#include "KeyCodeConsensus_En_US.h"
#undef CONTROL
#undef KEY
  };

  for (const auto& keyboardInfo : spoofingKeyboardInfoTable) {
    KeyboardHashKey key(lang, reg,
                        keyboardInfo.mKeyIdx,
                        keyboardInfo.mKey);
    MOZ_ASSERT(!sSpoofingKeyboardCodes->Lookup(key),
               "Double-defining key code; fix your KeyCodeConsensus file");
    sSpoofingKeyboardCodes->Put(key, &keyboardInfo.mSpoofingCode);
  }

  sInitialized = true;
}

/* static */
void
nsRFPService::GetKeyboardLangAndRegion(const nsAString& aLanguage,
                                       KeyboardLangs& aLocale,
                                       KeyboardRegions& aRegion)
{
  nsAutoString langStr;
  nsAutoString regionStr;
  uint32_t partNum = 0;

  for (const nsAString& part : aLanguage.Split('-')) {
    if (partNum == 0) {
      langStr = part;
    } else {
      regionStr = part;
      break;
    }

    partNum++;
  }

  // We test each language here as well as the region. There are some cases that
  // only the language is given, we will use the default region code when this
  // happens. The default region should depend on the given language.
  if (langStr.EqualsLiteral(RFP_KEYBOARD_LANG_STRING_EN)) {
    aLocale = KeyboardLang::EN;
    // Give default values first.
    aRegion = KeyboardRegion::US;

    if (regionStr.EqualsLiteral(RFP_KEYBOARD_REGION_STRING_US)) {
      aRegion = KeyboardRegion::US;
    }
  } else {
    // There is no spoofed keyboard locale for the given language. We use the
    // default one in this case.
    aLocale = RFP_DEFAULT_SPOOFING_KEYBOARD_LANG;
    aRegion = RFP_DEFAULT_SPOOFING_KEYBOARD_REGION;
  }
}

/* static */
bool
nsRFPService::GetSpoofedKeyCodeInfo(const nsIDocument* aDoc,
                                    const WidgetKeyboardEvent* aKeyboardEvent,
                                    SpoofingKeyboardCode& aOut)
{
  MOZ_ASSERT(aKeyboardEvent);

  KeyboardLangs keyboardLang = RFP_DEFAULT_SPOOFING_KEYBOARD_LANG;
  KeyboardRegions keyboardRegion = RFP_DEFAULT_SPOOFING_KEYBOARD_REGION;
  // If the document is given, we use the content language which is get from the
  // document. Otherwise, we use the default one.
  if (aDoc) {
    nsAutoString language;
    aDoc->GetContentLanguage(language);

    // If the content-langauge is not given, we try to get langauge from the HTML
    // lang attribute.
    if (language.IsEmpty()) {
      dom::Element* elm = aDoc->GetHtmlElement();

      if (elm) {
        elm->GetLang(language);
      }
    }

    // If two or more languages are given, per HTML5 spec, we should consider
    // it as 'unknown'. So we use the default one.
    if (!language.IsEmpty() &&
        !language.Contains(char16_t(','))) {
      language.StripWhitespace();
      GetKeyboardLangAndRegion(language, keyboardLang,
                               keyboardRegion);
    }
  }

  MaybeCreateSpoofingKeyCodes(keyboardLang, keyboardRegion);

  KeyNameIndex keyIdx = aKeyboardEvent->mKeyNameIndex;
  nsAutoString keyName;

  if (keyIdx == KEY_NAME_INDEX_USE_STRING) {
    keyName = aKeyboardEvent->mKeyValue;
  }

  KeyboardHashKey key(keyboardLang, keyboardRegion, keyIdx, keyName);
  const SpoofingKeyboardCode* keyboardCode = sSpoofingKeyboardCodes->Get(key);

  if (keyboardCode) {
    aOut = *keyboardCode;
    return true;
  }

  return false;
}

/* static */
bool
nsRFPService::GetSpoofedModifierStates(const nsIDocument* aDoc,
                                       const WidgetKeyboardEvent* aKeyboardEvent,
                                       const Modifiers aModifier,
                                       bool& aOut)
{
  MOZ_ASSERT(aKeyboardEvent);

  // For modifier or control keys, we don't need to hide its modifier states.
  if (aKeyboardEvent->mKeyNameIndex != KEY_NAME_INDEX_USE_STRING) {
    return false;
  }

  // We will spoof the modifer state for Alt, Shift, and AltGraph.
  // We don't spoof the Control key, because it is often used
  // for command key combinations in web apps.
  if (aModifier & (MODIFIER_ALT | MODIFIER_SHIFT | MODIFIER_ALTGRAPH)) {
    SpoofingKeyboardCode keyCodeInfo;

    if (GetSpoofedKeyCodeInfo(aDoc, aKeyboardEvent, keyCodeInfo)) {
      aOut = keyCodeInfo.mModifierStates & aModifier;
      return true;
    }
  }

  return false;
}

/* static */
bool
nsRFPService::GetSpoofedCode(const nsIDocument* aDoc,
                             const WidgetKeyboardEvent* aKeyboardEvent,
                             nsAString& aOut)
{
  MOZ_ASSERT(aKeyboardEvent);

  SpoofingKeyboardCode keyCodeInfo;

  if (!GetSpoofedKeyCodeInfo(aDoc, aKeyboardEvent, keyCodeInfo)) {
    return false;
  }

  WidgetKeyboardEvent::GetDOMCodeName(keyCodeInfo.mCode, aOut);

  // We need to change the 'Left' with 'Right' if the location indicates
  // it's a right key.
  if (aKeyboardEvent->mLocation ==
        dom::KeyboardEvent_Binding::DOM_KEY_LOCATION_RIGHT &&
      StringEndsWith(aOut, NS_LITERAL_STRING("Left"))) {
    aOut.ReplaceLiteral(aOut.Length() - 4, 4, u"Right");
  }

  return true;
}

/* static */
bool
nsRFPService::GetSpoofedKeyCode(const nsIDocument* aDoc,
                                const WidgetKeyboardEvent* aKeyboardEvent,
                                uint32_t& aOut)
{
  MOZ_ASSERT(aKeyboardEvent);

  SpoofingKeyboardCode keyCodeInfo;

  if (GetSpoofedKeyCodeInfo(aDoc, aKeyboardEvent, keyCodeInfo)) {
    aOut = keyCodeInfo.mKeyCode;
    return true;
  }

  return false;
}

void
nsRFPService::PrefChanged(const char* aPref)
{
  nsDependentCString pref(aPref);

  if (pref.EqualsLiteral(RFP_TIMER_PREF) ||
      pref.EqualsLiteral(RFP_TIMER_VALUE_PREF) ||
      pref.EqualsLiteral(RFP_JITTER_VALUE_PREF)) {
    UpdateTimers();
  }
  else if (pref.EqualsLiteral(RESIST_FINGERPRINTING_PREF)) {
    UpdateRFPPref();

#if defined(XP_WIN)
    if (!XRE_IsE10sParentProcess()) {
      // Windows does not follow POSIX. Updates to the TZ environment variable
      // are not reflected immediately on that platform as they are on UNIX
      // systems without this call.
      _tzset();
    }
#endif
  }
}

NS_IMETHODIMP
nsRFPService::Observe(nsISupports* aObject, const char* aTopic,
                      const char16_t* aMessage)
{
  if (!strcmp(NS_XPCOM_SHUTDOWN_OBSERVER_ID, aTopic)) {
    StartShutdown();
  }
#if defined(XP_WIN)
  else if (!strcmp(PROFILE_INITIALIZED_TOPIC, aTopic)) {
    // If we're e10s, then we don't need to run this, since the child process will
    // simply inherit the environment variable from the parent process, in which
    // case it's unnecessary to call _tzset().
    if (XRE_IsParentProcess() && !XRE_IsE10sParentProcess()) {
      // Windows does not follow POSIX. Updates to the TZ environment variable
      // are not reflected immediately on that platform as they are on UNIX
      // systems without this call.
      _tzset();
    }

    nsCOMPtr<nsIObserverService> obs = mozilla::services::GetObserverService();
    NS_ENSURE_TRUE(obs, NS_ERROR_NOT_AVAILABLE);

    nsresult rv = obs->RemoveObserver(this, PROFILE_INITIALIZED_TOPIC);
    NS_ENSURE_SUCCESS(rv, rv);
  }
#endif

  return NS_OK;
}