DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (409f3966645a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/* arcfour.c - the arc four algorithm.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif

#include "prerr.h"
#include "secerr.h"

#include "prtypes.h"
#include "blapi.h"

/* Architecture-dependent defines */

#if defined(SOLARIS) || defined(HPUX) || defined(NSS_X86) || \
    defined(_WIN64)
/* Convert the byte-stream to a word-stream */
#define CONVERT_TO_WORDS
#endif

#if defined(AIX) || defined(OSF1) || defined(NSS_BEVAND_ARCFOUR)
/* Treat array variables as words, not bytes, on CPUs that take
 * much longer to write bytes than to write words, or when using
 * assembler code that required it.
 */
#define USE_WORD
#endif

#if defined(IS_64) || defined(NSS_BEVAND_ARCFOUR)
typedef PRUint64 WORD;
#else
typedef PRUint32 WORD;
#endif
#define WORDSIZE sizeof(WORD)

#if defined(USE_WORD)
typedef WORD Stype;
#else
typedef PRUint8 Stype;
#endif

#define ARCFOUR_STATE_SIZE 256

#define MASK1BYTE (WORD)(0xff)

#define SWAP(a, b) \
    tmp = a;       \
    a = b;         \
    b = tmp;

/*
 * State information for stream cipher.
 */
struct RC4ContextStr {
#if defined(NSS_ARCFOUR_IJ_B4_S) || defined(NSS_BEVAND_ARCFOUR)
    Stype i;
    Stype j;
    Stype S[ARCFOUR_STATE_SIZE];
#else
    Stype S[ARCFOUR_STATE_SIZE];
    Stype i;
    Stype j;
#endif
};

/*
 * array indices [0..255] to initialize cx->S array (faster than loop).
 */
static const Stype Kinit[256] = {
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
    0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
    0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
    0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
    0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
    0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
    0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
    0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
    0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
    0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
    0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
    0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
    0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
    0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
    0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
    0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
    0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
    0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
    0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
    0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
    0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
    0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
    0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
    0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
    0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
    0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
    0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
    0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
    0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
    0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
    0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
    0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};

RC4Context *
RC4_AllocateContext(void)
{
    return PORT_ZNew(RC4Context);
}

SECStatus
RC4_InitContext(RC4Context *cx, const unsigned char *key, unsigned int len,
                const unsigned char *unused1, int unused2,
                unsigned int unused3, unsigned int unused4)
{
    unsigned int i;
    PRUint8 j, tmp;
    PRUint8 K[256];
    PRUint8 *L;

    /* verify the key length. */
    PORT_Assert(len > 0 && len < ARCFOUR_STATE_SIZE);
    if (len == 0 || len >= ARCFOUR_STATE_SIZE) {
        PORT_SetError(SEC_ERROR_BAD_KEY);
        return SECFailure;
    }
    if (cx == NULL) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }
    /* Initialize the state using array indices. */
    memcpy(cx->S, Kinit, sizeof cx->S);
    /* Fill in K repeatedly with values from key. */
    L = K;
    for (i = sizeof K; i > len; i -= len) {
        memcpy(L, key, len);
        L += len;
    }
    memcpy(L, key, i);
    /* Stir the state of the generator.  At this point it is assumed
     * that the key is the size of the state buffer.  If this is not
     * the case, the key bytes are repeated to fill the buffer.
     */
    j = 0;
#define ARCFOUR_STATE_STIR(ii) \
    j = j + cx->S[ii] + K[ii]; \
    SWAP(cx->S[ii], cx->S[j]);
    for (i = 0; i < ARCFOUR_STATE_SIZE; i++) {
        ARCFOUR_STATE_STIR(i);
    }
    cx->i = 0;
    cx->j = 0;
    return SECSuccess;
}

/*
 * Initialize a new generator.
 */
RC4Context *
RC4_CreateContext(const unsigned char *key, int len)
{
    RC4Context *cx = RC4_AllocateContext();
    if (cx) {
        SECStatus rv = RC4_InitContext(cx, key, len, NULL, 0, 0, 0);
        if (rv != SECSuccess) {
            PORT_ZFree(cx, sizeof(*cx));
            cx = NULL;
        }
    }
    return cx;
}

void
RC4_DestroyContext(RC4Context *cx, PRBool freeit)
{
    if (freeit)
        PORT_ZFree(cx, sizeof(*cx));
}

#if defined(NSS_BEVAND_ARCFOUR)
extern void ARCFOUR(RC4Context *cx, WORD inputLen,
                    const unsigned char *input, unsigned char *output);
#else
/*
 * Generate the next byte in the stream.
 */
#define ARCFOUR_NEXT_BYTE() \
    tmpSi = cx->S[++tmpi];  \
    tmpj += tmpSi;          \
    tmpSj = cx->S[tmpj];    \
    cx->S[tmpi] = tmpSj;    \
    cx->S[tmpj] = tmpSi;    \
    t = tmpSi + tmpSj;

#ifdef CONVERT_TO_WORDS
/*
 * Straight ARCFOUR op.  No optimization.
 */
static SECStatus
rc4_no_opt(RC4Context *cx, unsigned char *output,
           unsigned int *outputLen, unsigned int maxOutputLen,
           const unsigned char *input, unsigned int inputLen)
{
    PRUint8 t;
    Stype tmpSi, tmpSj;
    register PRUint8 tmpi = cx->i;
    register PRUint8 tmpj = cx->j;
    unsigned int index;
    PORT_Assert(maxOutputLen >= inputLen);
    if (maxOutputLen < inputLen) {
        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
        return SECFailure;
    }
    for (index = 0; index < inputLen; index++) {
        /* Generate next byte from stream. */
        ARCFOUR_NEXT_BYTE();
        /* output = next stream byte XOR next input byte */
        output[index] = cx->S[t] ^ input[index];
    }
    *outputLen = inputLen;
    cx->i = tmpi;
    cx->j = tmpj;
    return SECSuccess;
}

#else
/* !CONVERT_TO_WORDS */

/*
 * Byte-at-a-time ARCFOUR, unrolling the loop into 8 pieces.
 */
static SECStatus
rc4_unrolled(RC4Context *cx, unsigned char *output,
             unsigned int *outputLen, unsigned int maxOutputLen,
             const unsigned char *input, unsigned int inputLen)
{
    PRUint8 t;
    Stype tmpSi, tmpSj;
    register PRUint8 tmpi = cx->i;
    register PRUint8 tmpj = cx->j;
    int index;
    PORT_Assert(maxOutputLen >= inputLen);
    if (maxOutputLen < inputLen) {
        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
        return SECFailure;
    }
    for (index = inputLen / 8; index-- > 0; input += 8, output += 8) {
        ARCFOUR_NEXT_BYTE();
        output[0] = cx->S[t] ^ input[0];
        ARCFOUR_NEXT_BYTE();
        output[1] = cx->S[t] ^ input[1];
        ARCFOUR_NEXT_BYTE();
        output[2] = cx->S[t] ^ input[2];
        ARCFOUR_NEXT_BYTE();
        output[3] = cx->S[t] ^ input[3];
        ARCFOUR_NEXT_BYTE();
        output[4] = cx->S[t] ^ input[4];
        ARCFOUR_NEXT_BYTE();
        output[5] = cx->S[t] ^ input[5];
        ARCFOUR_NEXT_BYTE();
        output[6] = cx->S[t] ^ input[6];
        ARCFOUR_NEXT_BYTE();
        output[7] = cx->S[t] ^ input[7];
    }
    index = inputLen % 8;
    if (index) {
        input += index;
        output += index;
        switch (index) {
            case 7:
                ARCFOUR_NEXT_BYTE();
                output[-7] = cx->S[t] ^ input[-7]; /* FALLTHRU */
            case 6:
                ARCFOUR_NEXT_BYTE();
                output[-6] = cx->S[t] ^ input[-6]; /* FALLTHRU */
            case 5:
                ARCFOUR_NEXT_BYTE();
                output[-5] = cx->S[t] ^ input[-5]; /* FALLTHRU */
            case 4:
                ARCFOUR_NEXT_BYTE();
                output[-4] = cx->S[t] ^ input[-4]; /* FALLTHRU */
            case 3:
                ARCFOUR_NEXT_BYTE();
                output[-3] = cx->S[t] ^ input[-3]; /* FALLTHRU */
            case 2:
                ARCFOUR_NEXT_BYTE();
                output[-2] = cx->S[t] ^ input[-2]; /* FALLTHRU */
            case 1:
                ARCFOUR_NEXT_BYTE();
                output[-1] = cx->S[t] ^ input[-1]; /* FALLTHRU */
            default:
                /* FALLTHRU */
                ; /* hp-ux build breaks without this */
        }
    }
    cx->i = tmpi;
    cx->j = tmpj;
    *outputLen = inputLen;
    return SECSuccess;
}
#endif

#ifdef IS_LITTLE_ENDIAN
#define ARCFOUR_NEXT4BYTES_L(n)               \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n);      \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 8);  \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 16); \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 24);
#else
#define ARCFOUR_NEXT4BYTES_B(n)               \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 24); \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 16); \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n + 8);  \
    ARCFOUR_NEXT_BYTE();                      \
    streamWord |= (WORD)cx->S[t] << (n);
#endif

#if (defined(IS_64) && !defined(__sparc)) || defined(NSS_USE_64)
/* 64-bit wordsize */
#ifdef IS_LITTLE_ENDIAN
#define ARCFOUR_NEXT_WORD()       \
    {                             \
        streamWord = 0;           \
        ARCFOUR_NEXT4BYTES_L(0);  \
        ARCFOUR_NEXT4BYTES_L(32); \
    }
#else
#define ARCFOUR_NEXT_WORD()       \
    {                             \
        streamWord = 0;           \
        ARCFOUR_NEXT4BYTES_B(32); \
        ARCFOUR_NEXT4BYTES_B(0);  \
    }
#endif
#else
/* 32-bit wordsize */
#ifdef IS_LITTLE_ENDIAN
#define ARCFOUR_NEXT_WORD()      \
    {                            \
        streamWord = 0;          \
        ARCFOUR_NEXT4BYTES_L(0); \
    }
#else
#define ARCFOUR_NEXT_WORD()      \
    {                            \
        streamWord = 0;          \
        ARCFOUR_NEXT4BYTES_B(0); \
    }
#endif
#endif

#ifdef IS_LITTLE_ENDIAN
#define RSH <<
#define LSH >>
#else
#define RSH >>
#define LSH <<
#endif

#ifdef IS_LITTLE_ENDIAN
#define LEFTMOST_BYTE_SHIFT 0
#define NEXT_BYTE_SHIFT(shift) shift + 8
#else
#define LEFTMOST_BYTE_SHIFT 8 * (WORDSIZE - 1)
#define NEXT_BYTE_SHIFT(shift) shift - 8
#endif

#ifdef CONVERT_TO_WORDS
static SECStatus
rc4_wordconv(RC4Context *cx, unsigned char *output,
             unsigned int *outputLen, unsigned int maxOutputLen,
             const unsigned char *input, unsigned int inputLen)
{
    PR_STATIC_ASSERT(sizeof(PRUword) == sizeof(ptrdiff_t));
    unsigned int inOffset = (PRUword)input % WORDSIZE;
    unsigned int outOffset = (PRUword)output % WORDSIZE;
    register WORD streamWord;
    register const WORD *pInWord;
    register WORD *pOutWord;
    register WORD inWord, nextInWord;
    PRUint8 t;
    register Stype tmpSi, tmpSj;
    register PRUint8 tmpi = cx->i;
    register PRUint8 tmpj = cx->j;
    unsigned int bufShift, invBufShift;
    unsigned int i;
    const unsigned char *finalIn;
    unsigned char *finalOut;

    PORT_Assert(maxOutputLen >= inputLen);
    if (maxOutputLen < inputLen) {
        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
        return SECFailure;
    }
    if (inputLen < 2 * WORDSIZE) {
        /* Ignore word conversion, do byte-at-a-time */
        return rc4_no_opt(cx, output, outputLen, maxOutputLen, input, inputLen);
    }
    *outputLen = inputLen;
    pInWord = (const WORD *)(input - inOffset);
    pOutWord = (WORD *)(output - outOffset);
    if (inOffset <= outOffset) {
        bufShift = 8 * (outOffset - inOffset);
        invBufShift = 8 * WORDSIZE - bufShift;
    } else {
        invBufShift = 8 * (inOffset - outOffset);
        bufShift = 8 * WORDSIZE - invBufShift;
    }
    /*****************************************************************/
    /* Step 1:                                                       */
    /* If the first output word is partial, consume the bytes in the */
    /* first partial output word by loading one or two words of      */
    /* input and shifting them accordingly.  Otherwise, just load    */
    /* in the first word of input.  At the end of this block, at     */
    /* least one partial word of input should ALWAYS be loaded.      */
    /*****************************************************************/
    if (outOffset) {
        unsigned int byteCount = WORDSIZE - outOffset;
        for (i = 0; i < byteCount; i++) {
            ARCFOUR_NEXT_BYTE();
            output[i] = cx->S[t] ^ input[i];
        }
        /* Consumed byteCount bytes of input */
        inputLen -= byteCount;
        pInWord++;

        /* move to next word of output */
        pOutWord++;

        /* If buffers are relatively misaligned, shift the bytes in inWord
         * to be aligned to the output buffer.
         */
        if (inOffset < outOffset) {
            /* The first input word (which may be partial) has more bytes
             * than needed.  Copy the remainder to inWord.
             */
            unsigned int shift = LEFTMOST_BYTE_SHIFT;
            inWord = 0;
            for (i = 0; i < outOffset - inOffset; i++) {
                inWord |= (WORD)input[byteCount + i] << shift;
                shift = NEXT_BYTE_SHIFT(shift);
            }
        } else if (inOffset > outOffset) {
            /* Consumed some bytes in the second input word.  Copy the
             * remainder to inWord.
             */
            inWord = *pInWord++;
            inWord = inWord LSH invBufShift;
        } else {
            inWord = 0;
        }
    } else {
        /* output is word-aligned */
        if (inOffset) {
            /* Input is not word-aligned.  The first word load of input
             * will not produce a full word of input bytes, so one word
             * must be pre-loaded.  The main loop below will load in the
             * next input word and shift some of its bytes into inWord
             * in order to create a full input word.  Note that the main
             * loop must execute at least once because the input must
             * be at least two words.
             */
            unsigned int shift = LEFTMOST_BYTE_SHIFT;
            inWord = 0;
            for (i = 0; i < WORDSIZE - inOffset; i++) {
                inWord |= (WORD)input[i] << shift;
                shift = NEXT_BYTE_SHIFT(shift);
            }
            pInWord++;
        } else {
            /* Input is word-aligned.  The first word load of input
             * will produce a full word of input bytes, so nothing
             * needs to be loaded here.
             */
            inWord = 0;
        }
    }
    /*****************************************************************/
    /* Step 2: main loop                                             */
    /* At this point the output buffer is word-aligned.  Any unused  */
    /* bytes from above will be in inWord (shifted correctly).  If   */
    /* the input buffer is unaligned relative to the output buffer,  */
    /* shifting has to be done.                                      */
    /*****************************************************************/
    if (bufShift) {
        /* preloadedByteCount is the number of input bytes pre-loaded
         * in inWord.
         */
        unsigned int preloadedByteCount = bufShift / 8;
        for (; inputLen >= preloadedByteCount + WORDSIZE;
             inputLen -= WORDSIZE) {
            nextInWord = *pInWord++;
            inWord |= nextInWord RSH bufShift;
            nextInWord = nextInWord LSH invBufShift;
            ARCFOUR_NEXT_WORD();
            *pOutWord++ = inWord ^ streamWord;
            inWord = nextInWord;
        }
        if (inputLen == 0) {
            /* Nothing left to do. */
            cx->i = tmpi;
            cx->j = tmpj;
            return SECSuccess;
        }
        finalIn = (const unsigned char *)pInWord - preloadedByteCount;
    } else {
        for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) {
            inWord = *pInWord++;
            ARCFOUR_NEXT_WORD();
            *pOutWord++ = inWord ^ streamWord;
        }
        if (inputLen == 0) {
            /* Nothing left to do. */
            cx->i = tmpi;
            cx->j = tmpj;
            return SECSuccess;
        }
        finalIn = (const unsigned char *)pInWord;
    }
    /*****************************************************************/
    /* Step 3:                                                       */
    /* Do the remaining partial word of input one byte at a time.    */
    /*****************************************************************/
    finalOut = (unsigned char *)pOutWord;
    for (i = 0; i < inputLen; i++) {
        ARCFOUR_NEXT_BYTE();
        finalOut[i] = cx->S[t] ^ finalIn[i];
    }
    cx->i = tmpi;
    cx->j = tmpj;
    return SECSuccess;
}
#endif
#endif /* NSS_BEVAND_ARCFOUR */

SECStatus
RC4_Encrypt(RC4Context *cx, unsigned char *output,
            unsigned int *outputLen, unsigned int maxOutputLen,
            const unsigned char *input, unsigned int inputLen)
{
    PORT_Assert(maxOutputLen >= inputLen);
    if (maxOutputLen < inputLen) {
        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
        return SECFailure;
    }
#if defined(NSS_BEVAND_ARCFOUR)
    ARCFOUR(cx, inputLen, input, output);
    *outputLen = inputLen;
    return SECSuccess;
#elif defined(CONVERT_TO_WORDS)
    /* Convert the byte-stream to a word-stream */
    return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
#else
    /* Operate on bytes, but unroll the main loop */
    return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
#endif
}

SECStatus
RC4_Decrypt(RC4Context *cx, unsigned char *output,
            unsigned int *outputLen, unsigned int maxOutputLen,
            const unsigned char *input, unsigned int inputLen)
{
    PORT_Assert(maxOutputLen >= inputLen);
    if (maxOutputLen < inputLen) {
        PORT_SetError(SEC_ERROR_OUTPUT_LEN);
        return SECFailure;
    }
/* decrypt and encrypt are same operation. */
#if defined(NSS_BEVAND_ARCFOUR)
    ARCFOUR(cx, inputLen, input, output);
    *outputLen = inputLen;
    return SECSuccess;
#elif defined(CONVERT_TO_WORDS)
    /* Convert the byte-stream to a word-stream */
    return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
#else
    /* Operate on bytes, but unroll the main loop */
    return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
#endif
}

#undef CONVERT_TO_WORDS
#undef USE_WORD