DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (409f3966645a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
/*
 * alg2268.c - implementation of the algorithm in RFC 2268
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifdef FREEBL_NO_DEPEND
#include "stubs.h"
#endif

#include "blapi.h"
#include "blapii.h"
#include "secerr.h"
#ifdef XP_UNIX_XXX
#include <stddef.h> /* for ptrdiff_t */
#endif

/*
** RC2 symmetric block cypher
*/

typedef SECStatus(rc2Func)(RC2Context *cx, unsigned char *output,
                           const unsigned char *input, unsigned int inputLen);

/* forward declarations */
static rc2Func rc2_EncryptECB;
static rc2Func rc2_DecryptECB;
static rc2Func rc2_EncryptCBC;
static rc2Func rc2_DecryptCBC;

typedef union {
    PRUint32 l[2];
    PRUint16 s[4];
    PRUint8 b[8];
} RC2Block;

struct RC2ContextStr {
    union {
        PRUint8 Kb[128];
        PRUint16 Kw[64];
    } u;
    RC2Block iv;
    rc2Func *enc;
    rc2Func *dec;
};

#define B u.Kb
#define K u.Kw
#define BYTESWAP(x) ((x) << 8 | (x) >> 8)
#define SWAPK(i) cx->K[i] = (tmpS = cx->K[i], BYTESWAP(tmpS))
#define RC2_BLOCK_SIZE 8

#define LOAD_HARD(R)                           \
    R[0] = (PRUint16)input[1] << 8 | input[0]; \
    R[1] = (PRUint16)input[3] << 8 | input[2]; \
    R[2] = (PRUint16)input[5] << 8 | input[4]; \
    R[3] = (PRUint16)input[7] << 8 | input[6];
#define LOAD_EASY(R)               \
    R[0] = ((PRUint16 *)input)[0]; \
    R[1] = ((PRUint16 *)input)[1]; \
    R[2] = ((PRUint16 *)input)[2]; \
    R[3] = ((PRUint16 *)input)[3];
#define STORE_HARD(R)                 \
    output[0] = (PRUint8)(R[0]);      \
    output[1] = (PRUint8)(R[0] >> 8); \
    output[2] = (PRUint8)(R[1]);      \
    output[3] = (PRUint8)(R[1] >> 8); \
    output[4] = (PRUint8)(R[2]);      \
    output[5] = (PRUint8)(R[2] >> 8); \
    output[6] = (PRUint8)(R[3]);      \
    output[7] = (PRUint8)(R[3] >> 8);
#define STORE_EASY(R)               \
    ((PRUint16 *)output)[0] = R[0]; \
    ((PRUint16 *)output)[1] = R[1]; \
    ((PRUint16 *)output)[2] = R[2]; \
    ((PRUint16 *)output)[3] = R[3];

#if defined(NSS_X86_OR_X64)
#define LOAD(R) LOAD_EASY(R)
#define STORE(R) STORE_EASY(R)
#elif !defined(IS_LITTLE_ENDIAN)
#define LOAD(R) LOAD_HARD(R)
#define STORE(R) STORE_HARD(R)
#else
#define LOAD(R)                 \
    if ((ptrdiff_t)input & 1) { \
        LOAD_HARD(R)            \
    } else {                    \
        LOAD_EASY(R)            \
    }
#define STORE(R)                \
    if ((ptrdiff_t)input & 1) { \
        STORE_HARD(R)           \
    } else {                    \
        STORE_EASY(R)           \
    }
#endif

static const PRUint8 S[256] = {
    0331, 0170, 0371, 0304, 0031, 0335, 0265, 0355, 0050, 0351, 0375, 0171, 0112, 0240, 0330, 0235,
    0306, 0176, 0067, 0203, 0053, 0166, 0123, 0216, 0142, 0114, 0144, 0210, 0104, 0213, 0373, 0242,
    0027, 0232, 0131, 0365, 0207, 0263, 0117, 0023, 0141, 0105, 0155, 0215, 0011, 0201, 0175, 0062,
    0275, 0217, 0100, 0353, 0206, 0267, 0173, 0013, 0360, 0225, 0041, 0042, 0134, 0153, 0116, 0202,
    0124, 0326, 0145, 0223, 0316, 0140, 0262, 0034, 0163, 0126, 0300, 0024, 0247, 0214, 0361, 0334,
    0022, 0165, 0312, 0037, 0073, 0276, 0344, 0321, 0102, 0075, 0324, 0060, 0243, 0074, 0266, 0046,
    0157, 0277, 0016, 0332, 0106, 0151, 0007, 0127, 0047, 0362, 0035, 0233, 0274, 0224, 0103, 0003,
    0370, 0021, 0307, 0366, 0220, 0357, 0076, 0347, 0006, 0303, 0325, 0057, 0310, 0146, 0036, 0327,
    0010, 0350, 0352, 0336, 0200, 0122, 0356, 0367, 0204, 0252, 0162, 0254, 0065, 0115, 0152, 0052,
    0226, 0032, 0322, 0161, 0132, 0025, 0111, 0164, 0113, 0237, 0320, 0136, 0004, 0030, 0244, 0354,
    0302, 0340, 0101, 0156, 0017, 0121, 0313, 0314, 0044, 0221, 0257, 0120, 0241, 0364, 0160, 0071,
    0231, 0174, 0072, 0205, 0043, 0270, 0264, 0172, 0374, 0002, 0066, 0133, 0045, 0125, 0227, 0061,
    0055, 0135, 0372, 0230, 0343, 0212, 0222, 0256, 0005, 0337, 0051, 0020, 0147, 0154, 0272, 0311,
    0323, 0000, 0346, 0317, 0341, 0236, 0250, 0054, 0143, 0026, 0001, 0077, 0130, 0342, 0211, 0251,
    0015, 0070, 0064, 0033, 0253, 0063, 0377, 0260, 0273, 0110, 0014, 0137, 0271, 0261, 0315, 0056,
    0305, 0363, 0333, 0107, 0345, 0245, 0234, 0167, 0012, 0246, 0040, 0150, 0376, 0177, 0301, 0255
};

RC2Context *
RC2_AllocateContext(void)
{
    return PORT_ZNew(RC2Context);
}
SECStatus
RC2_InitContext(RC2Context *cx, const unsigned char *key, unsigned int len,
                const unsigned char *input, int mode, unsigned int efLen8,
                unsigned int unused)
{
    PRUint8 *L, *L2;
    int i;
#if !defined(IS_LITTLE_ENDIAN)
    PRUint16 tmpS;
#endif
    PRUint8 tmpB;

    if (!key || !cx || !len || len > (sizeof cx->B) ||
        efLen8 > (sizeof cx->B)) {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }
    if (mode == NSS_RC2) {
        /* groovy */
    } else if (mode == NSS_RC2_CBC) {
        if (!input) {
            PORT_SetError(SEC_ERROR_INVALID_ARGS);
            return SECFailure;
        }
    } else {
        PORT_SetError(SEC_ERROR_INVALID_ARGS);
        return SECFailure;
    }

    if (mode == NSS_RC2_CBC) {
        cx->enc = &rc2_EncryptCBC;
        cx->dec = &rc2_DecryptCBC;
        LOAD(cx->iv.s);
    } else {
        cx->enc = &rc2_EncryptECB;
        cx->dec = &rc2_DecryptECB;
    }

    /* Step 0. Copy key into table. */
    memcpy(cx->B, key, len);

    /* Step 1. Compute all values to the right of the key. */
    L2 = cx->B;
    L = L2 + len;
    tmpB = L[-1];
    for (i = (sizeof cx->B) - len; i > 0; --i) {
        *L++ = tmpB = S[(PRUint8)(tmpB + *L2++)];
    }

    /* step 2. Adjust left most byte of effective key. */
    i = (sizeof cx->B) - efLen8;
    L = cx->B + i;
    *L = tmpB = S[*L]; /* mask is always 0xff */

    /* step 3. Recompute all values to the left of effective key. */
    L2 = --L + efLen8;
    while (L >= cx->B) {
        *L-- = tmpB = S[tmpB ^ *L2--];
    }

#if !defined(IS_LITTLE_ENDIAN)
    for (i = 63; i >= 0; --i) {
        SWAPK(i); /* candidate for unrolling */
    }
#endif
    return SECSuccess;
}

/*
** Create a new RC2 context suitable for RC2 encryption/decryption.
**  "key" raw key data
**  "len" the number of bytes of key data
**  "iv" is the CBC initialization vector (if mode is NSS_RC2_CBC)
**  "mode" one of NSS_RC2 or NSS_RC2_CBC
**  "effectiveKeyLen" in bytes, not bits.
**
** When mode is set to NSS_RC2_CBC the RC2 cipher is run in "cipher block
** chaining" mode.
*/
RC2Context *
RC2_CreateContext(const unsigned char *key, unsigned int len,
                  const unsigned char *iv, int mode, unsigned efLen8)
{
    RC2Context *cx = PORT_ZNew(RC2Context);
    if (cx) {
        SECStatus rv = RC2_InitContext(cx, key, len, iv, mode, efLen8, 0);
        if (rv != SECSuccess) {
            RC2_DestroyContext(cx, PR_TRUE);
            cx = NULL;
        }
    }
    return cx;
}

/*
** Destroy an RC2 encryption/decryption context.
**  "cx" the context
**  "freeit" if PR_TRUE then free the object as well as its sub-objects
*/
void
RC2_DestroyContext(RC2Context *cx, PRBool freeit)
{
    if (cx) {
        memset(cx, 0, sizeof *cx);
        if (freeit) {
            PORT_Free(cx);
        }
    }
}

#define ROL(x, k) (x << k | x >> (16 - k))
#define MIX(j)                                           \
    R0 = R0 + cx->K[4 * j + 0] + (R3 & R2) + (~R3 & R1); \
    R0 = ROL(R0, 1);                                     \
    R1 = R1 + cx->K[4 * j + 1] + (R0 & R3) + (~R0 & R2); \
    R1 = ROL(R1, 2);                                     \
    R2 = R2 + cx->K[4 * j + 2] + (R1 & R0) + (~R1 & R3); \
    R2 = ROL(R2, 3);                                     \
    R3 = R3 + cx->K[4 * j + 3] + (R2 & R1) + (~R2 & R0); \
    R3 = ROL(R3, 5)
#define MASH                  \
    R0 = R0 + cx->K[R3 & 63]; \
    R1 = R1 + cx->K[R0 & 63]; \
    R2 = R2 + cx->K[R1 & 63]; \
    R3 = R3 + cx->K[R2 & 63]

/* Encrypt one block */
static void
rc2_Encrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
{
    register PRUint16 R0, R1, R2, R3;

    /* step 1. Initialize input. */
    R0 = input->s[0];
    R1 = input->s[1];
    R2 = input->s[2];
    R3 = input->s[3];

    /* step 2.  Expand Key (already done, in context) */
    /* step 3.  j = 0 */
    /* step 4.  Perform 5 mixing rounds. */

    MIX(0);
    MIX(1);
    MIX(2);
    MIX(3);
    MIX(4);

    /* step 5. Perform 1 mashing round. */
    MASH;

    /* step 6. Perform 6 mixing rounds. */

    MIX(5);
    MIX(6);
    MIX(7);
    MIX(8);
    MIX(9);
    MIX(10);

    /* step 7. Perform 1 mashing round. */
    MASH;

    /* step 8. Perform 5 mixing rounds. */

    MIX(11);
    MIX(12);
    MIX(13);
    MIX(14);
    MIX(15);

    /* output results */
    output->s[0] = R0;
    output->s[1] = R1;
    output->s[2] = R2;
    output->s[3] = R3;
}

#define ROR(x, k) (x >> k | x << (16 - k))
#define R_MIX(j)                                         \
    R3 = ROR(R3, 5);                                     \
    R3 = R3 - cx->K[4 * j + 3] - (R2 & R1) - (~R2 & R0); \
    R2 = ROR(R2, 3);                                     \
    R2 = R2 - cx->K[4 * j + 2] - (R1 & R0) - (~R1 & R3); \
    R1 = ROR(R1, 2);                                     \
    R1 = R1 - cx->K[4 * j + 1] - (R0 & R3) - (~R0 & R2); \
    R0 = ROR(R0, 1);                                     \
    R0 = R0 - cx->K[4 * j + 0] - (R3 & R2) - (~R3 & R1)
#define R_MASH                \
    R3 = R3 - cx->K[R2 & 63]; \
    R2 = R2 - cx->K[R1 & 63]; \
    R1 = R1 - cx->K[R0 & 63]; \
    R0 = R0 - cx->K[R3 & 63]

/* Encrypt one block */
static void
rc2_Decrypt1Block(RC2Context *cx, RC2Block *output, RC2Block *input)
{
    register PRUint16 R0, R1, R2, R3;

    /* step 1. Initialize input. */
    R0 = input->s[0];
    R1 = input->s[1];
    R2 = input->s[2];
    R3 = input->s[3];

    /* step 2.  Expand Key (already done, in context) */
    /* step 3.  j = 63 */
    /* step 4.  Perform 5 r_mixing rounds. */
    R_MIX(15);
    R_MIX(14);
    R_MIX(13);
    R_MIX(12);
    R_MIX(11);

    /* step 5.  Perform 1 r_mashing round. */
    R_MASH;

    /* step 6.  Perform 6 r_mixing rounds. */
    R_MIX(10);
    R_MIX(9);
    R_MIX(8);
    R_MIX(7);
    R_MIX(6);
    R_MIX(5);

    /* step 7.  Perform 1 r_mashing round. */
    R_MASH;

    /* step 8.  Perform 5 r_mixing rounds. */
    R_MIX(4);
    R_MIX(3);
    R_MIX(2);
    R_MIX(1);
    R_MIX(0);

    /* output results */
    output->s[0] = R0;
    output->s[1] = R1;
    output->s[2] = R2;
    output->s[3] = R3;
}

static SECStatus NO_SANITIZE_ALIGNMENT
rc2_EncryptECB(RC2Context *cx, unsigned char *output,
               const unsigned char *input, unsigned int inputLen)
{
    RC2Block iBlock;

    while (inputLen > 0) {
        LOAD(iBlock.s)
        rc2_Encrypt1Block(cx, &iBlock, &iBlock);
        STORE(iBlock.s)
        output += RC2_BLOCK_SIZE;
        input += RC2_BLOCK_SIZE;
        inputLen -= RC2_BLOCK_SIZE;
    }
    return SECSuccess;
}

static SECStatus NO_SANITIZE_ALIGNMENT
rc2_DecryptECB(RC2Context *cx, unsigned char *output,
               const unsigned char *input, unsigned int inputLen)
{
    RC2Block iBlock;

    while (inputLen > 0) {
        LOAD(iBlock.s)
        rc2_Decrypt1Block(cx, &iBlock, &iBlock);
        STORE(iBlock.s)
        output += RC2_BLOCK_SIZE;
        input += RC2_BLOCK_SIZE;
        inputLen -= RC2_BLOCK_SIZE;
    }
    return SECSuccess;
}

static SECStatus NO_SANITIZE_ALIGNMENT
rc2_EncryptCBC(RC2Context *cx, unsigned char *output,
               const unsigned char *input, unsigned int inputLen)
{
    RC2Block iBlock;

    while (inputLen > 0) {

        LOAD(iBlock.s)
        iBlock.l[0] ^= cx->iv.l[0];
        iBlock.l[1] ^= cx->iv.l[1];
        rc2_Encrypt1Block(cx, &iBlock, &iBlock);
        cx->iv = iBlock;
        STORE(iBlock.s)
        output += RC2_BLOCK_SIZE;
        input += RC2_BLOCK_SIZE;
        inputLen -= RC2_BLOCK_SIZE;
    }
    return SECSuccess;
}

static SECStatus NO_SANITIZE_ALIGNMENT
rc2_DecryptCBC(RC2Context *cx, unsigned char *output,
               const unsigned char *input, unsigned int inputLen)
{
    RC2Block iBlock;
    RC2Block oBlock;

    while (inputLen > 0) {
        LOAD(iBlock.s)
        rc2_Decrypt1Block(cx, &oBlock, &iBlock);
        oBlock.l[0] ^= cx->iv.l[0];
        oBlock.l[1] ^= cx->iv.l[1];
        cx->iv = iBlock;
        STORE(oBlock.s)
        output += RC2_BLOCK_SIZE;
        input += RC2_BLOCK_SIZE;
        inputLen -= RC2_BLOCK_SIZE;
    }
    return SECSuccess;
}

/*
** Perform RC2 encryption.
**  "cx" the context
**  "output" the output buffer to store the encrypted data.
**  "outputLen" how much data is stored in "output". Set by the routine
**     after some data is stored in output.
**  "maxOutputLen" the maximum amount of data that can ever be
**     stored in "output"
**  "input" the input data
**  "inputLen" the amount of input data
*/
SECStatus
RC2_Encrypt(RC2Context *cx, unsigned char *output,
            unsigned int *outputLen, unsigned int maxOutputLen,
            const unsigned char *input, unsigned int inputLen)
{
    SECStatus rv = SECSuccess;
    if (inputLen) {
        if (inputLen % RC2_BLOCK_SIZE) {
            PORT_SetError(SEC_ERROR_INPUT_LEN);
            return SECFailure;
        }
        if (maxOutputLen < inputLen) {
            PORT_SetError(SEC_ERROR_OUTPUT_LEN);
            return SECFailure;
        }
        rv = (*cx->enc)(cx, output, input, inputLen);
    }
    if (rv == SECSuccess) {
        *outputLen = inputLen;
    }
    return rv;
}

/*
** Perform RC2 decryption.
**  "cx" the context
**  "output" the output buffer to store the decrypted data.
**  "outputLen" how much data is stored in "output". Set by the routine
**     after some data is stored in output.
**  "maxOutputLen" the maximum amount of data that can ever be
**     stored in "output"
**  "input" the input data
**  "inputLen" the amount of input data
*/
SECStatus
RC2_Decrypt(RC2Context *cx, unsigned char *output,
            unsigned int *outputLen, unsigned int maxOutputLen,
            const unsigned char *input, unsigned int inputLen)
{
    SECStatus rv = SECSuccess;
    if (inputLen) {
        if (inputLen % RC2_BLOCK_SIZE) {
            PORT_SetError(SEC_ERROR_INPUT_LEN);
            return SECFailure;
        }
        if (maxOutputLen < inputLen) {
            PORT_SetError(SEC_ERROR_OUTPUT_LEN);
            return SECFailure;
        }
        rv = (*cx->dec)(cx, output, input, inputLen);
    }
    if (rv == SECSuccess) {
        *outputLen = inputLen;
    }
    return rv;
}