DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Implementation

Mercurial (409f3966645a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_DottedCornerFinder_h_
#define mozilla_DottedCornerFinder_h_

#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/BezierUtils.h"
#include "gfxRect.h"

namespace mozilla {

// Calculate C_i and r_i for each filled/unfilled circles in dotted corner.
// Returns circle with C_{2j} and r_{2j} where 0 < 2j < n.
//
//                            ____-----------+
//                      __----  *****     ###|
//                __----      *********  ####|
//           __---  #####    ***********#####|
//        _--     #########  *****+*****#####+ C_0
//      _-       ########### *** C_1****#####|
//     /         #####+#####  *********  ####|
//    /       .  ### C_2 ###    *****     ###|
//   |            #########       ____-------+
//   |     .        #####____-----
//  |              __----
//  |    .       /
// |           /
// |  *****   |
// | ******* |
// |*********|
// |****+****|
// | C_{n-1} |
// | ******* |
// |  *****  |
// |  #####  |
// | ####### |
// |#########|
// +----+----+
//     C_n

class DottedCornerFinder
{
  typedef mozilla::gfx::Bezier Bezier;
  typedef mozilla::gfx::Float Float;
  typedef mozilla::gfx::Point Point;
  typedef mozilla::gfx::Size Size;

public:
  struct Result
  {
    // Center point of dot and its radius.
    Point C;
    Float r;

    Result(const Point& aC, Float aR)
      : C(aC)
      , r(aR)
    {
      MOZ_ASSERT(aR >= 0);
    }
  };

  //                        aBorderRadiusX
  //                       aCornerDim.width
  //                     |<----------------->|
  //                     |                   | v
  //                   --+-------------___---+--
  //                   ^ |         __--      | |
  //                   | |       _-          | | aR0
  //                   | |     /         aC0 +--
  //                   | |   /               | ^
  //                   | |  |                |
  //  aBorderRadiusY   | | |             __--+
  // aCornerDim.height | ||            _-
  //                   | ||           /
  //                   | |           /
  //                   | |          |
  //                   | |          |
  //                   | |         |
  //                   | |         |
  //                   v |    aCn  |
  //                   --+----+----+
  //                     |    |
  //                     |<-->|
  //                      aRn
  //
  // aCornerDim and (aBorderRadiusX, aBorderRadiusY) can be different when
  // aBorderRadiusX is smaller than aRn*2 or
  // aBorderRadiusY is smaller than aR0*2.
  //
  //                                        aCornerDim.width
  //                                      |<----------------->|
  //                                      |                   |
  //                                      | aBorderRadiusX    |
  //                                      |<--------->|       |
  //                                      |           |       |
  //                   -------------------+-------__--+-------+--
  //                   ^                ^ |     _-            | ^
  //                   |                | |   /               | |
  //                   |                | |  /                | |
  //                   | aBorderRadiusY | | |                 | | aR0
  //                   |                | ||                  | |
  //                   |                | |                   | |
  // aCornerDim.height |                v |                   | v
  //                   |                --+               aC0 +--
  //                   |                  |                   |
  //                   |                  |                   |
  //                   |                  |                   |
  //                   |                  |                   |
  //                   |                  |                   |
  //                   v                  |        aCn        |
  //                   -------------------+---------+---------+
  //                                      |         |
  //                                      |<------->|
  //                                          aRn
  DottedCornerFinder(const Bezier& aOuterBezier,
                     const Bezier& aInnerBezier,
                     mozilla::Corner aCorner,
                     Float aBorderRadiusX,
                     Float aBorderRadiusY,
                     const Point& aC0,
                     Float aR0,
                     const Point& aCn,
                     Float aRn,
                     const Size& aCornerDim);

  bool HasMore(void) const;
  Result Next(void);

private:
  static const size_t MAX_LOOP = 32;

  // Bezier control points for the outer curve, the inner curve, and a curve
  // that center points of circles are on (center curve).
  //
  //               ___---+ outer curve
  //           __--      |
  //         _-          |
  //       /        __---+ center curve
  //     /      __--     |
  //    |     /          |
  //   |    /        __--+ inner curve
  //  |    |       _-
  //  |    |      /
  // |     |     /
  // |    |     |
  // |    |     |
  // |    |    |
  // |    |    |
  // |    |    |
  // +----+----+
  Bezier mOuterBezier;
  Bezier mInnerBezier;
  Bezier mCenterBezier;

  mozilla::Corner mCorner;

  // Sign of the normal vector used in radius calculation, flipped depends on
  // corner and start and end radii.
  Float mNormalSign;

  // Center points and raii for start and end circles, mR0 >= mRn.
  // mMaxR = max(mR0, mRn)
  //
  //                           v
  //               ___---+------
  //           __--     #|#    | mRn
  //         _-        ##|##   |
  //       /           ##+## ---
  //     /              mCn    ^
  //    |               #|#
  //   |             __--+
  //  |            _-
  //  |           /
  // |           /
  // |          |
  // |          |
  // |  #####  |
  // | ####### |
  // |#########|
  // +----+----+
  // |## mC0 ##|
  // | ####### |
  // |  #####  |
  // |    |
  // |<-->|
  //
  //  mR0
  //
  Point mC0;
  Point mCn;
  Float mR0;
  Float mRn;
  Float mMaxR;

  // Parameters for the center curve with perfect circle and the inner curve.
  // The center curve doesn't necessarily share the origin with others.
  //
  //               ___---+
  //           __--      |
  //         _-          |
  //       /        __-+ |
  //     /      __--     |
  //    |     /          |
  //   |    /        __--+--
  //  |    |       _-    | ^
  //  |    |      /      | |
  // |     |     /       | |
  // |    |     |        | |
  // |    |     |        | | mInnerHeight
  // |    |    |         | |
  // |    +    |         | |
  // |         |         | v
  // +---------+---------+
  //           |         | mInnerCurveOrigin
  //           |<------->|
  //           mInnerWidth
  //
  //               ___---+
  //           __--
  //         _-
  //       /        __-+
  //     /      __--   |
  //    |     /        |
  //   |    /        __--+
  //  |    |       _-  |
  //  |    |      /    |
  // |     |     /     |
  // |    |     |      |
  // |    |     |      |
  // |    |    |       |
  // |    +--- | ------+
  // |    |    |       | mCenterCurveOrigin
  // +    |    +       |
  //      |            |
  //      |            |
  //      |            |
  //      |            |
  //      |<---------->|
  //       mCenterCurveR
  //
  Point mCenterCurveOrigin;
  Float mCenterCurveR;
  Point mInnerCurveOrigin;
  Float mInnerWidth;
  Float mInnerHeight;

  Point mLastC;
  Float mLastR;
  Float mLastT;

  // Overlap between two circles.
  // It uses arc length on PERFECT, SINGLE_CURVE_AND_RADIUS, and SINGLE_CURVE,
  // and direct distance on OTHER.
  Float mBestOverlap;

  // If one of border-widths is 0, do not calculate overlap, and draw circles
  // until it reaches the other side or exceeds mMaxCount.
  bool mHasZeroBorderWidth;
  bool mHasMore;

  // The maximum number of filled/unfilled circles.
  size_t mMaxCount;

  enum
  {
    //                      radius.width
    //                 |<----------------->|
    //                 |                   |
    //               --+-------------___---+----
    //               ^ |         __--     #|#  ^
    //               | |       _-        ##|## |
    //               | |     /           ##+## | top-width
    //               | |   /             ##|## |
    //               | |  |               #|#  v
    //               | | |             __--+----
    // radius.height | ||            _-
    //               | ||           /
    //               | |           /
    //               | |          |
    //               | |          |
    //               | |  #####  |
    //               | | ####### |
    //               v |#########|
    //               --+----+----+
    //                 |#########|
    //                 | ####### |
    //                 |  #####  |
    //                 |         |
    //                 |<------->|
    //                  left-width

    // * top-width == left-width
    // * radius.width == radius.height
    // * top-width < radius.width * 2
    //
    // All circles has same radii and are on single perfect circle's arc.
    // Overlap is known.
    //
    // Split the perfect circle's arc into 2n segments, each segment's length is
    // top-width * (1 - overlap).  Place each circle's center point C_i on each
    // end of the segment, each circle's radius r_i is top-width / 2
    //
    //                       #####
    //                      #######
    // perfect             #########
    // circle's          ___---+####
    // arc     ##### __--  ## C_0 ##
    //   |    #####_-       ###|###
    //   |   ####+####       ##|##
    //   |   ##/C_i ##         |
    //   |    |######          |
    //   |   | #####           |
    //   +->|                  |
    //     |                   |
    //   ##|##                 |
    //  ###|###                |
    // ####|####               |
    // ####+-------------------+
    // ## C_n ##
    //  #######
    //   #####
    PERFECT,

    // * top-width == left-width
    // * 0.5 < radius.width / radius.height < 2.0
    // * top-width < min(radius.width, radius.height) * 2
    //
    // All circles has same radii and are on single elliptic arc.
    // Overlap is known.
    //
    // Split the elliptic arc into 2n segments, each segment's length is
    // top-width * (1 - overlap).  Place each circle's center point C_i on each
    // end of the segment, each circle's radius r_i is top-width / 2
    //
    //                            #####
    //                           #######
    //             #####        #########
    //            #######   ____----+####
    // elliptic  ######__---    ## C_0 ##
    // arc       ##__+-###       ###|###
    //   |      / # C_i #         ##|##
    //   +--> /    #####            |
    //       |                      |
    //   ###|#                      |
    //  ###|###                     |
    // ####|####                    |
    // ####+------------------------+
    // ## C_n ##
    //  #######
    //   #####
    SINGLE_CURVE_AND_RADIUS,

    // * top-width != left-width
    // * 0 < min(top-width, left-width)
    // * 0.5 < radius.width / radius.height < 2.0
    // * max(top-width, left-width) < min(radius.width, radius.height) * 2
    //
    // All circles are on single elliptic arc.
    // Overlap is unknown.
    //
    // Place each circle's center point C_i on elliptic arc, each circle's
    // radius r_i is the distance between the center point and the inner curve.
    // The arc segment's length between C_i and C_{i-1} is
    // (r_i + r_{i-1}) * (1 - overlap).
    //
    //  outer curve
    //           /
    //          /
    //         /         / center curve
    //        / ####### /
    //       /##       /#
    //      +#        /  #
    //     /#        /    #
    //    / #   C_i /     #
    //   /  #      +      #  /
    //  /   #     /  \    # / inner curve
    //      #    /     \  #/
    //       #  /   r_i  \+
    //        #/       ##/
    //        / ####### /
    //                 /
    SINGLE_CURVE,

    // Other cases.
    // Circles are not on single elliptic arc.
    // Overlap are unknown.
    //
    // Place tangent point innerTangent on the inner curve and find circle's
    // center point C_i and radius r_i where the circle is also tangent to the
    // outer curve.
    // Distance between C_i and C_{i-1} is (r_i + r_{i-1}) * (1 - overlap).
    //
    //  outer curve
    //           /
    //          /
    //         /
    //        / #######
    //       /##       ##
    //      +#           #
    //     /# \           #
    //    / #    \        #
    //   /  #      +      #  /
    //  /   #   C_i  \    # / inner curve
    //      #          \  #/
    //       #      r_i  \+
    //        ##       ##/ innerTangent
    //          ####### /
    //                 /
    OTHER
  } mType;

  size_t mI;
  size_t mCount;

  // Determine mType from parameters.
  void DetermineType(Float aBorderRadiusX, Float aBorderRadiusY);

  // Reset calculation.
  void Reset(void);

  // Find radius for the given tangent point on the inner curve such that the
  // circle is also tangent to the outer curve.
  void FindPointAndRadius(Point& C,
                          Float& r,
                          const Point& innerTangent,
                          const Point& normal,
                          Float t);

  // Find next dot.
  Float FindNext(Float overlap);

  // Find mBestOverlap for parameters.
  void FindBestOverlap(Float aMinR,
                       Float aMinBorderRadius,
                       Float aMaxBorderRadius);

  // Fill corner with dots with given overlap, and return the number of dots
  // and last two dots's overlap.
  bool GetCountAndLastOverlap(Float aOverlap,
                              size_t* aCount,
                              Float* aActualOverlap);
};

} // namespace mozilla

#endif /* mozilla_DottedCornerFinder_h_ */