DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (409f3966645a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */


#include "nsRegion.h"
#include "nsTArray.h"
#include "gfxUtils.h"
#include "mozilla/ToString.h"

using namespace std;

void
nsRegion::AssertStateInternal() const
{
  bool failed = false;
  // Verify consistent state inside the region.
  int32_t lastY = INT32_MIN;
  int32_t lowestX = INT32_MAX;
  int32_t highestX = INT32_MIN;
  for (auto iter = mBands.begin(); iter != mBands.end(); iter++) {
    const Band& band = *iter;
    if (band.bottom <= band.top) {
      failed = true;
      break;
    }
    if (band.top < lastY) {
      failed = true;
      break;
    }
    lastY = band.bottom;

    lowestX = std::min(lowestX, band.mStrips.begin()->left);
    highestX = std::max(highestX, band.mStrips.LastElement().right);

    int32_t lastX = INT32_MIN;
    if (iter != mBands.begin()) {
      auto prev = iter;
      prev--;

      if (prev->bottom == iter->top) {
        if (band.EqualStrips(*prev)) {
          failed = true;
          break;
        }
      }
    }
    for (const Strip& strip : band.mStrips) {
      if (strip.right <= strip.left) {
        failed = true;
        break;
      }
      if (strip.left <= lastX) {
        failed = true;
        break;
      }
      lastX = strip.right;
    }
    if (failed) {
      break;
    }
  }

  if (!(mBounds.IsEqualEdges(CalculateBounds()))) {
    failed = true;
  }

  if (failed) {
#ifdef DEBUG_REGIONS
    if (mCurrentOpGenerator) {
      mCurrentOpGenerator->OutputOp();
    }
#endif
    MOZ_ASSERT(false);
  }
}

bool nsRegion::Contains(const nsRegion& aRgn) const
{
  // XXX this could be made faster by iterating over
  // both regions at the same time some how
  for (auto iter = aRgn.RectIter(); !iter.Done(); iter.Next()) {
    if (!Contains(iter.Get())) {
      return false;
    }
  }
  return true;
}

bool nsRegion::Intersects(const nsRectAbsolute& aRect) const
{
  if (mBands.IsEmpty()) {
    return mBounds.Intersects(aRect);
  }

  if (!mBounds.Intersects(aRect)) {
    return false;
  }

  Strip rectStrip(aRect.X(), aRect.XMost());

  auto iter = mBands.begin();
  while (iter != mBands.end()) {
    if (iter->top >= aRect.YMost()) {
      return false;
    }

    if (iter->bottom <= aRect.Y()) {
      // This band is entirely before aRect, move on.
      iter++;
      continue;
    }

    if (!iter->Intersects(rectStrip)) {
      // This band does not intersect aRect horizontally. Move on.
      iter++;
      continue;
    }

    // This band intersects with aRect.
    return true;
  }

  return false;
}

void nsRegion::Inflate(const nsMargin& aMargin)
{
  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRectAbsolute rect = iter.GetAbsolute();
    rect.Inflate(aMargin);
    newRegion.AddRect(rect);
  }

  *this = std::move(newRegion);
}

void nsRegion::SimplifyOutward (uint32_t aMaxRects)
{
  MOZ_ASSERT(aMaxRects >= 1, "Invalid max rect count");

  if (GetNumRects() <= aMaxRects) {
    return;
  }

  // Try combining rects in horizontal bands into a single rect
  // The goal here is to try to keep groups of rectangles that are vertically
  // discontiguous as separate rectangles in the final region. This is
  // simple and fast to implement and page contents tend to vary more
  // vertically than horizontally (which is why our rectangles are stored
  // sorted by y-coordinate, too).
  //
  // Note: if boxes share y1 because of the canonical representation they
  // will share y2

  size_t idx = 0;

  while (idx < mBands.Length()) {
    size_t oldIdx = idx;
    mBands[idx].mStrips.begin()->right = mBands[idx].mStrips.LastElement().right;
    mBands[idx].mStrips.TruncateLength(1);
    idx++;

    // Merge any bands with the same bounds.
    while (idx < mBands.Length() &&
           mBands[idx].mStrips.begin()->left == mBands[oldIdx].mStrips.begin()->left &&
           mBands[idx].mStrips.LastElement().right == mBands[oldIdx].mStrips.begin()->right) {
      mBands[oldIdx].bottom = mBands[idx].bottom;
      mBands.RemoveElementAt(idx);
    }
  }

  AssertState();

  // mBands.size() is now equal to our rect count.
  if (mBands.Length() > aMaxRects) {
    *this = GetBounds();
  }
}

// compute the covered area difference between two rows.
// by iterating over both rows simultaneously and adding up
// the additional increase in area caused by extending each
// of the rectangles to the combined height of both rows
uint32_t
nsRegion::ComputeMergedAreaIncrease(const Band& aTopBand,
                                    const Band& aBottomBand)
{
  uint32_t totalArea = 0;

  uint32_t topHeight = aBottomBand.top - aTopBand.top;
  uint32_t bottomHeight = aBottomBand.bottom - aTopBand.bottom;
  uint32_t currentStripBottom = 0;

  // This could be done with slightly better worse case performance by merging these two
  // for-loops, but this makes the code a lot easier to understand.
  for (auto& strip : aTopBand.mStrips) {
    if (currentStripBottom == aBottomBand.mStrips.Length() || strip.right < aBottomBand.mStrips[currentStripBottom].left) {
      totalArea += bottomHeight * strip.Size();
      continue;
    }

    int32_t currentX = strip.left;
    while (currentStripBottom != aBottomBand.mStrips.Length() && aBottomBand.mStrips[currentStripBottom].left < strip.right) {
      if (currentX >= strip.right) {
        break;
      }
      if (currentX < aBottomBand.mStrips[currentStripBottom].left) {
        // Add the part that's not intersecting.
        totalArea += (aBottomBand.mStrips[currentStripBottom].left - currentX) * bottomHeight;
      }

      currentX = std::max(aBottomBand.mStrips[currentStripBottom].right, currentX);
      currentStripBottom++;
    }

    // Add remainder of this strip.
    if (currentX < strip.right) {
      totalArea += (strip.right - currentX) * bottomHeight;
    }
    if (currentStripBottom) {
      currentStripBottom--;
    }
  }
  uint32_t currentStripTop = 0;
  for (auto& strip : aBottomBand.mStrips) {
    if (currentStripTop == aTopBand.mStrips.Length() || strip.right < aTopBand.mStrips[currentStripTop].left) {
      totalArea += topHeight * strip.Size();
      continue;
    }

    int32_t currentX = strip.left;
    while (currentStripTop != aTopBand.mStrips.Length() && aTopBand.mStrips[currentStripTop].left < strip.right) {
      if (currentX >= strip.right) {
        break;
      }
      if (currentX < aTopBand.mStrips[currentStripTop].left) {
        // Add the part that's not intersecting.
        totalArea += (aTopBand.mStrips[currentStripTop].left - currentX) * topHeight;
      }

      currentX = std::max(aTopBand.mStrips[currentStripTop].right, currentX);
      currentStripTop++;
    }

    // Add remainder of this strip.
    if (currentX < strip.right) {
      totalArea += (strip.right - currentX) * topHeight;
    }
    if (currentStripTop) {
      currentStripTop--;
    }
  }
  return totalArea;
}

void nsRegion::SimplifyOutwardByArea(uint32_t aThreshold)
{
  if (mBands.Length() < 2) {
    // We have only one or no row and we're done.
    return;
  }

  uint32_t currentBand = 0;
  do {
    Band& band = mBands[currentBand];

    uint32_t totalArea = ComputeMergedAreaIncrease(band, mBands[currentBand + 1]);

    if (totalArea <= aThreshold) {
      for (Strip& strip : mBands[currentBand + 1].mStrips) {
        // This could use an optimized function to merge two bands.
        band.InsertStrip(strip);
      }
      band.bottom = mBands[currentBand + 1].bottom;
      mBands.RemoveElementAt(currentBand + 1);
    } else {
      currentBand++;
    }
  } while (currentBand + 1 < mBands.Length());

  EnsureSimplified();
  AssertState();
}


typedef void (*visit_fn)(void *closure, VisitSide side, int x1, int y1, int x2, int y2);

void nsRegion::VisitEdges (visit_fn visit, void *closure) const
{
  if (mBands.IsEmpty()) {
    visit(closure, VisitSide::LEFT, mBounds.X(), mBounds.Y(), mBounds.X(), mBounds.YMost());
    visit(closure, VisitSide::RIGHT, mBounds.XMost(), mBounds.Y(), mBounds.XMost(), mBounds.YMost());
    visit(closure, VisitSide::TOP, mBounds.X() - 1, mBounds.Y(), mBounds.XMost() + 1, mBounds.Y());
    visit(closure, VisitSide::BOTTOM, mBounds.X() - 1, mBounds.YMost(), mBounds.XMost() + 1, mBounds.YMost());
    return;
  }

  auto band = std::begin(mBands);
  auto bandFinal = std::end(mBands);
  bandFinal--;
  for (const Strip& strip : band->mStrips) {
    visit(closure, VisitSide::LEFT, strip.left, band->top, strip.left, band->bottom);
    visit(closure, VisitSide::RIGHT, strip.right, band->top, strip.right, band->bottom);
    visit(closure, VisitSide::TOP, strip.left - 1, band->top, strip.right + 1, band->top);
  }

  if (band != bandFinal) {
    do {
      const Band& topBand = *band;
      band++;

      for (const Strip& strip : band->mStrips) {
        visit(closure, VisitSide::LEFT, strip.left, band->top, strip.left, band->bottom);
        visit(closure, VisitSide::RIGHT, strip.right, band->top, strip.right, band->bottom);
      }

      if (band->top == topBand.bottom) {
        // Two bands touching each other vertically.
        const Band& bottomBand = *band;
        auto topStrip = std::begin(topBand.mStrips);
        auto bottomStrip = std::begin(bottomBand.mStrips);

        int y = topBand.bottom;

        // State from this point on along the vertical edge:
        // 0 - Empty
        // 1 - Touched by top rect
        // 2 - Touched by bottom rect
        // 3 - Touched on both sides
        int state;
        const int TouchedByNothing = 0;
        const int TouchedByTop = 1;
        const int TouchedByBottom = 2;
        // We always start with nothing.
        int oldState = TouchedByNothing;
        // Last state change, adjusted by -1 if the last state change was
        // a change away from 0.
        int lastX = std::min(topStrip->left, bottomStrip->left) - 1;

        // Current edge being considered for top and bottom, 0 - left, 1 - right.
        bool topEdgeIsLeft = true;
        bool bottomEdgeIsLeft = true;
        while (topStrip != std::end(topBand.mStrips) && bottomStrip != std::end(bottomBand.mStrips)) {
          int topPos;
          int bottomPos;
          if (topEdgeIsLeft) {
            topPos = topStrip->left;
          } else {
            topPos = topStrip->right;
          }
          if (bottomEdgeIsLeft) {
            bottomPos = bottomStrip->left;
          } else {
            bottomPos = bottomStrip->right;
          }

          int currentX = std::min(topPos, bottomPos);
          if (topPos < bottomPos) {
            if (topEdgeIsLeft) {
              state = oldState | TouchedByTop;
            } else {
              state = oldState ^ TouchedByTop;
              topStrip++;
            }
            topEdgeIsLeft = !topEdgeIsLeft;
          } else if (bottomPos < topPos) {
            if (bottomEdgeIsLeft) {
              state = oldState | TouchedByBottom;
            } else {
              state = oldState ^ TouchedByBottom;
              bottomStrip++;
            }
            bottomEdgeIsLeft = !bottomEdgeIsLeft;
          } else {
            // bottomPos == topPos
            state = TouchedByNothing;
            if (bottomEdgeIsLeft) {
              state = TouchedByBottom;
            } else {
              bottomStrip++;
            }
            if (topEdgeIsLeft) {
              state |= TouchedByTop;
            } else {
              topStrip++;
            }
            topEdgeIsLeft = !topEdgeIsLeft;
            bottomEdgeIsLeft = !bottomEdgeIsLeft;
          }

          MOZ_ASSERT(state != oldState);
          if (oldState == TouchedByNothing) {
            // We had nothing before, make sure the left edge will be padded.
            lastX = currentX - 1;
          } else if (oldState == TouchedByTop) {
            if (state == TouchedByNothing) {
              visit(closure, VisitSide::BOTTOM, lastX, y, currentX + 1, y);
            } else {
              visit(closure, VisitSide::BOTTOM, lastX, y, currentX, y);
              lastX = currentX;
            }
          } else if (oldState == TouchedByBottom) {
            if (state == TouchedByNothing) {
              visit(closure, VisitSide::TOP, lastX, y, currentX + 1, y);
            } else {
              visit(closure, VisitSide::TOP, lastX, y, currentX, y);
              lastX = currentX;
            }
          } else {
            lastX = currentX;
          }
          oldState = state;
        }

        MOZ_ASSERT(!state || (topEdgeIsLeft || bottomEdgeIsLeft));
        if (topStrip != std::end(topBand.mStrips)) {
          if (!topEdgeIsLeft) {
            visit(closure, VisitSide::BOTTOM, lastX, y, topStrip->right + 1, y);
            topStrip++;
          }
          while (topStrip != std::end(topBand.mStrips)) {
            visit(closure, VisitSide::BOTTOM, topStrip->left - 1, y, topStrip->right + 1, y);
            topStrip++;
          }
        } else if (bottomStrip != std::end(bottomBand.mStrips)) {
          if (!bottomEdgeIsLeft) {
            visit(closure, VisitSide::TOP, lastX, y, bottomStrip->right + 1, y);
            bottomStrip++;
          }
          while (bottomStrip != std::end(bottomBand.mStrips)) {
            visit(closure, VisitSide::TOP, bottomStrip->left - 1, y, bottomStrip->right + 1, y);
            bottomStrip++;
          }
        }
      } else {
        for (const Strip& strip : topBand.mStrips) {
          visit(closure, VisitSide::BOTTOM, strip.left - 1, topBand.bottom, strip.right + 1, topBand.bottom);
        }
        for (const Strip& strip : band->mStrips) {
          visit(closure, VisitSide::TOP, strip.left - 1, band->top, strip.right + 1, band->top);
        }
      }
    } while (band != bandFinal);
  }

  for (const Strip& strip : band->mStrips) {
    visit(closure, VisitSide::BOTTOM, strip.left - 1, band->bottom, strip.right + 1, band->bottom);
  }
}


void nsRegion::SimplifyInward (uint32_t aMaxRects)
{
  NS_ASSERTION(aMaxRects >= 1, "Invalid max rect count");

  if (GetNumRects() <= aMaxRects)
    return;

  SetEmpty();
}

uint64_t nsRegion::Area () const
{
  if (mBands.IsEmpty()) {
    return mBounds.Area();
  }

  uint64_t area = 0;
  for (const Band& band : mBands) {
    uint32_t height = band.bottom - band.top;
    for (const Strip& strip : band.mStrips) {
      area += (strip.right - strip.left) * height;
    }
  }

  return area;
}

nsRegion& nsRegion::ScaleRoundOut (float aXScale, float aYScale)
{
  if (mozilla::gfx::FuzzyEqual(aXScale, 1.0f) &&
      mozilla::gfx::FuzzyEqual(aYScale, 1.0f)) {
    return *this;
  }

  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRectAbsolute rect = iter.GetAbsolute();
    rect.ScaleRoundOut(aXScale, aYScale);
    newRegion.AddRect(rect);
  }

  *this = std::move(newRegion);
  return *this;
}

nsRegion& nsRegion::ScaleInverseRoundOut (float aXScale, float aYScale)
{
  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRectAbsolute rect = iter.GetAbsolute();
    rect.ScaleInverseRoundOut(aXScale, aYScale);
    newRegion.AddRect(rect);
  }

  *this = std::move(newRegion);
  return *this;
}

static mozilla::gfx::IntRect
TransformRect(const mozilla::gfx::IntRect& aRect, const mozilla::gfx::Matrix4x4& aTransform)
{
    if (aRect.IsEmpty()) {
        return mozilla::gfx::IntRect();
    }

    mozilla::gfx::RectDouble rect(aRect.X(), aRect.Y(), aRect.Width(), aRect.Height());
    rect = aTransform.TransformAndClipBounds(rect, mozilla::gfx::RectDouble::MaxIntRect());
    rect.RoundOut();

    mozilla::gfx::IntRect intRect;
    if (!gfxUtils::GfxRectToIntRect(ThebesRect(rect), &intRect)) {
        return mozilla::gfx::IntRect();
    }

    return intRect;
}

nsRegion& nsRegion::Transform (const mozilla::gfx::Matrix4x4 &aTransform)
{
  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRect rect = nsIntRegion::ToRect(TransformRect(nsIntRegion::FromRect(iter.Get()), aTransform));
    newRegion.AddRect(nsRectAbsolute::FromRect(rect));
  }

  *this = std::move(newRegion);
  return *this;
}


nsRegion nsRegion::ScaleToOtherAppUnitsRoundOut (int32_t aFromAPP, int32_t aToAPP) const
{
  if (aFromAPP == aToAPP) {
    return *this;
  }
  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRect rect = iter.Get();
    rect = rect.ScaleToOtherAppUnitsRoundOut(aFromAPP, aToAPP);
    newRegion.AddRect(nsRectAbsolute::FromRect(rect));
  }

  return newRegion;
}

nsRegion nsRegion::ScaleToOtherAppUnitsRoundIn (int32_t aFromAPP, int32_t aToAPP) const
{
  if (aFromAPP == aToAPP) {
    return *this;
  }

  nsRegion newRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRect rect = iter.Get();
    rect = rect.ScaleToOtherAppUnitsRoundIn(aFromAPP, aToAPP);
    newRegion.AddRect(nsRectAbsolute::FromRect(rect));
  }

  return newRegion;
}

nsIntRegion nsRegion::ToPixels (nscoord aAppUnitsPerPixel, bool aOutsidePixels) const
{
  nsIntRegion intRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    mozilla::gfx::IntRect deviceRect;
    nsRect rect = iter.Get();
    if (aOutsidePixels)
      deviceRect = rect.ToOutsidePixels(aAppUnitsPerPixel);
    else
      deviceRect = rect.ToNearestPixels(aAppUnitsPerPixel);
    intRegion.OrWith(deviceRect);
  }

  return intRegion;
}

nsIntRegion nsRegion::ToOutsidePixels (nscoord aAppUnitsPerPixel) const
{
  return ToPixels(aAppUnitsPerPixel, true);
}

nsIntRegion nsRegion::ToNearestPixels (nscoord aAppUnitsPerPixel) const
{
  return ToPixels(aAppUnitsPerPixel, false);
}

nsIntRegion nsRegion::ScaleToNearestPixels (float aScaleX, float aScaleY,
                                            nscoord aAppUnitsPerPixel) const
{
  nsIntRegion result;
  for (auto iter = RectIter(); !iter.Done(); iter.Next()) {
    mozilla::gfx::IntRect deviceRect =
      iter.Get().ScaleToNearestPixels(aScaleX, aScaleY, aAppUnitsPerPixel);
    result.Or(result, deviceRect);
  }
  return result;
}

nsIntRegion nsRegion::ScaleToOutsidePixels (float aScaleX, float aScaleY,
                                            nscoord aAppUnitsPerPixel) const
{
  // make a copy of the region so that we can mutate it inplace
  nsIntRegion intRegion;
  for (RectIterator iter = RectIterator(*this); !iter.Done(); iter.Next()) {
    nsRect rect = iter.Get();
    intRegion.OrWith(rect.ScaleToOutsidePixels(aScaleX, aScaleY, aAppUnitsPerPixel));
  }
  return intRegion;
}

nsIntRegion nsRegion::ScaleToInsidePixels (float aScaleX, float aScaleY,
                                           nscoord aAppUnitsPerPixel) const
{
  /* When scaling a rect, walk forward through the rect list up until the y value is greater
   * than the current rect's YMost() value.
   *
   * For each rect found, check if the rects have a touching edge (in unscaled coordinates),
   * and if one edge is entirely contained within the other.
   *
   * If it is, then the contained edge can be moved (in scaled pixels) to ensure that no
   * gap exists.
   *
   * Since this could be potentially expensive - O(n^2), we only attempt this algorithm
   * for the first rect.
   */

  if (mBands.IsEmpty()) {
    nsIntRect rect = mBounds.ToNSRect().ScaleToInsidePixels(aScaleX, aScaleY, aAppUnitsPerPixel);
    return nsIntRegion(rect);
  }

  nsIntRegion intRegion;
  RectIterator iter = RectIterator(*this);

  nsRect first = iter.Get();

  mozilla::gfx::IntRect firstDeviceRect =
    first.ScaleToInsidePixels(aScaleX, aScaleY, aAppUnitsPerPixel);

  for (iter.Next(); !iter.Done(); iter.Next()) {
    nsRect rect = iter.Get();
    mozilla::gfx::IntRect deviceRect =
                          rect.ScaleToInsidePixels(aScaleX, aScaleY, aAppUnitsPerPixel);

    if (rect.Y() <= first.YMost()) {
      if (rect.XMost() == first.X() && rect.YMost() <= first.YMost()) {
        // rect is touching on the left edge of the first rect and contained within
        // the length of its left edge
        deviceRect.SetRightEdge(firstDeviceRect.X());
      } else if (rect.X() == first.XMost() && rect.YMost() <= first.YMost()) {
        // rect is touching on the right edge of the first rect and contained within
        // the length of its right edge
        deviceRect.SetLeftEdge(firstDeviceRect.XMost());
      } else if (rect.Y() == first.YMost()) {
        // The bottom of the first rect is on the same line as the top of rect, but
        // they aren't necessarily contained.
        if (rect.X() <= first.X() && rect.XMost() >= first.XMost()) {
          // The top of rect contains the bottom of the first rect
          firstDeviceRect.SetBottomEdge(deviceRect.Y());
        } else if (rect.X() >= first.X() && rect.XMost() <= first.XMost()) {
          // The bottom of the first contains the top of rect
          deviceRect.SetTopEdge(firstDeviceRect.YMost());
        }
      }
    }

    intRegion.OrWith(deviceRect);
  }

  intRegion.OrWith(firstDeviceRect);
  return intRegion;
}

// A cell's "value" is a pair consisting of
// a) the area of the subrectangle it corresponds to, if it's in
// aContainingRect and in the region, 0 otherwise
// b) the area of the subrectangle it corresponds to, if it's in the region,
// 0 otherwise
// Addition, subtraction and identity are defined on these values in the
// obvious way. Partial order is lexicographic.
// A "large negative value" is defined with large negative numbers for both
// fields of the pair. This negative value has the property that adding any
// number of non-negative values to it always results in a negative value.
//
// The GetLargestRectangle algorithm works in three phases:
//  1) Convert the region into a grid by adding vertical/horizontal lines for
//     each edge of each rectangle in the region.
//  2) For each rectangle in the region, for each cell it contains, set that
//     cells's value as described above.
//  3) Calculate the submatrix with the largest sum such that none of its cells
//     contain any 0s (empty regions). The rectangle represented by the
//     submatrix is the largest rectangle in the region.
//
// Let k be the number of rectangles in the region.
// Let m be the height of the grid generated in step 1.
// Let n be the width of the grid generated in step 1.
//
// Step 1 is O(k) in time and O(m+n) in space for the sparse grid.
// Step 2 is O(mn) in time and O(mn) in additional space for the full grid.
// Step 3 is O(m^2 n) in time and O(mn) in additional space
//
// The implementation of steps 1 and 2 are rather straightforward. However our
// implementation of step 3 uses dynamic programming to achieve its efficiency.
//
// Psuedo code for step 3 is as follows where G is the grid from step 1 and A
// is the array from step 2:
// Phase3 = function (G, A, m, n) {
//   let (t,b,l,r,_) = MaxSum2D(A,m,n)
//   return rect(G[t],G[l],G[r],G[b]);
// }
// MaxSum2D = function (A, m, n) {
//   S = array(m+1,n+1)
//   S[0][i] = 0 for i in [0,n]
//   S[j][0] = 0 for j in [0,m]
//   S[j][i] = (if A[j-1][i-1] = 0 then some large negative value else A[j-1][i-1])
//           + S[j-1][n] + S[j][i-1] - S[j-1][i-1]
//
//   // top, bottom, left, right, area
//   var maxRect = (-1, -1, -1, -1, 0);
//
//   for all (m',m'') in [0, m]^2 {
//     let B = { S[m'][i] - S[m''][i] | 0 <= i <= n }
//     let ((l,r),area) = MaxSum1D(B,n+1)
//     if (area > maxRect.area) {
//       maxRect := (m', m'', l, r, area)
//     }
//   }
//
//   return maxRect;
// }
//
// Originally taken from Improved algorithms for the k-maximum subarray problem
// for small k - SE Bae, T Takaoka but modified to show the explicit tracking
// of indices and we already have the prefix sums from our one call site so
// there's no need to construct them.
// MaxSum1D = function (A,n) {
//   var minIdx = 0;
//   var min = 0;
//   var maxIndices = (0,0);
//   var max = 0;
//   for i in range(n) {
//     let cand = A[i] - min;
//     if (cand > max) {
//       max := cand;
//       maxIndices := (minIdx, i)
//     }
//     if (min > A[i]) {
//       min := A[i];
//       minIdx := i;
//     }
//   }
//   return (minIdx, maxIdx, max);
// }

namespace {
  // This class represents a partitioning of an axis delineated by coordinates.
  // It internally maintains a sorted array of coordinates.
  class AxisPartition {
  public:
    // Adds a new partition at the given coordinate to this partitioning. If
    // the coordinate is already present in the partitioning, this does nothing.
    void InsertCoord(nscoord c) {
      uint32_t i = mStops.IndexOfFirstElementGt(c);
      if (i == 0 || mStops[i-1] != c) {
        mStops.InsertElementAt(i, c);
      }
    }

    // Returns the array index of the given partition point. The partition
    // point must already be present in the partitioning.
    int32_t IndexOf(nscoord p) const {
      return mStops.BinaryIndexOf(p);
    }

    // Returns the partition at the given index which must be non-zero and
    // less than the number of partitions in this partitioning.
    nscoord StopAt(int32_t index) const {
      return mStops[index];
    }

    // Returns the size of the gap between the partition at the given index and
    // the next partition in this partitioning. If the index is the last index
    // in the partitioning, the result is undefined.
    nscoord StopSize(int32_t index) const {
      return mStops[index+1] - mStops[index];
    }

    // Returns the number of partitions in this partitioning.
    int32_t GetNumStops() const { return mStops.Length(); }

  private:
    nsTArray<nscoord> mStops;
  };

  const int64_t kVeryLargeNegativeNumber = 0xffff000000000000ll;

  struct SizePair {
    int64_t mSizeContainingRect;
    int64_t mSize;

    SizePair() : mSizeContainingRect(0), mSize(0) {}

    static SizePair VeryLargeNegative() {
      SizePair result;
      result.mSize = result.mSizeContainingRect = kVeryLargeNegativeNumber;
      return result;
    }
    bool operator<(const SizePair& aOther) const {
      if (mSizeContainingRect < aOther.mSizeContainingRect)
        return true;
      if (mSizeContainingRect > aOther.mSizeContainingRect)
        return false;
      return mSize < aOther.mSize;
    }
    bool operator>(const SizePair& aOther) const {
      return aOther.operator<(*this);
    }
    SizePair operator+(const SizePair& aOther) const {
      SizePair result = *this;
      result.mSizeContainingRect += aOther.mSizeContainingRect;
      result.mSize += aOther.mSize;
      return result;
    }
    SizePair operator-(const SizePair& aOther) const {
      SizePair result = *this;
      result.mSizeContainingRect -= aOther.mSizeContainingRect;
      result.mSize -= aOther.mSize;
      return result;
    }
  };

  // Returns the sum and indices of the subarray with the maximum sum of the
  // given array (A,n), assuming the array is already in prefix sum form.
  SizePair MaxSum1D(const nsTArray<SizePair> &A, int32_t n,
                    int32_t *minIdx, int32_t *maxIdx) {
    // The min/max indicies of the largest subarray found so far
    SizePair min, max;
    int32_t currentMinIdx = 0;

    *minIdx = 0;
    *maxIdx = 0;

    // Because we're given the array in prefix sum form, we know the first
    // element is 0
    for(int32_t i = 1; i < n; i++) {
      SizePair cand = A[i] - min;
      if (cand > max) {
        max = cand;
        *minIdx = currentMinIdx;
        *maxIdx = i;
      }
      if (min > A[i]) {
        min = A[i];
        currentMinIdx = i;
      }
    }

    return max;
  }
} // namespace

nsRect nsRegion::GetLargestRectangle (const nsRect& aContainingRect) const {
  nsRect bestRect;

  if (GetNumRects() <= 1) {
    bestRect = GetBounds();
    return bestRect;
  }

  AxisPartition xaxis, yaxis;

  // Step 1: Calculate the grid lines
  for (auto iter = RectIter(); !iter.Done(); iter.Next()) {
    const nsRect& rect = iter.Get();
    xaxis.InsertCoord(rect.X());
    xaxis.InsertCoord(rect.XMost());
    yaxis.InsertCoord(rect.Y());
    yaxis.InsertCoord(rect.YMost());
  }
  if (!aContainingRect.IsEmpty()) {
    xaxis.InsertCoord(aContainingRect.X());
    xaxis.InsertCoord(aContainingRect.XMost());
    yaxis.InsertCoord(aContainingRect.Y());
    yaxis.InsertCoord(aContainingRect.YMost());
  }

  // Step 2: Fill out the grid with the areas
  // Note: due to the ordering of rectangles in the region, it is not always
  // possible to combine steps 2 and 3 so we don't try to be clever.
  int32_t matrixHeight = yaxis.GetNumStops() - 1;
  int32_t matrixWidth = xaxis.GetNumStops() - 1;
  int32_t matrixSize = matrixHeight * matrixWidth;
  nsTArray<SizePair> areas(matrixSize);
  areas.SetLength(matrixSize);

  for (auto iter = RectIter(); !iter.Done(); iter.Next()) {
    const nsRect& rect = iter.Get();
    int32_t xstart = xaxis.IndexOf(rect.X());
    int32_t xend = xaxis.IndexOf(rect.XMost());
    int32_t y = yaxis.IndexOf(rect.Y());
    int32_t yend = yaxis.IndexOf(rect.YMost());

    for (; y < yend; y++) {
      nscoord height = yaxis.StopSize(y);
      for (int32_t x = xstart; x < xend; x++) {
        nscoord width = xaxis.StopSize(x);
        int64_t size = width*int64_t(height);
        if (rect.Intersects(aContainingRect)) {
          areas[y*matrixWidth+x].mSizeContainingRect = size;
        }
        areas[y*matrixWidth+x].mSize = size;
      }
    }
  }

  // Step 3: Find the maximum submatrix sum that does not contain a rectangle
  {
    // First get the prefix sum array
    int32_t m = matrixHeight + 1;
    int32_t n = matrixWidth + 1;
    nsTArray<SizePair> pareas(m*n);
    pareas.SetLength(m*n);
    for (int32_t y = 1; y < m; y++) {
      for (int32_t x = 1; x < n; x++) {
        SizePair area = areas[(y-1)*matrixWidth+x-1];
        if (!area.mSize) {
          area = SizePair::VeryLargeNegative();
        }
        area = area + pareas[    y*n+x-1]
                    + pareas[(y-1)*n+x  ]
                    - pareas[(y-1)*n+x-1];
        pareas[y*n+x] = area;
      }
    }

    // No longer need the grid
    areas.SetLength(0);

    SizePair bestArea;
    struct {
      int32_t left, top, right, bottom;
    } bestRectIndices = { 0, 0, 0, 0 };
    for (int32_t m1 = 0; m1 < m; m1++) {
      for (int32_t m2 = m1+1; m2 < m; m2++) {
        nsTArray<SizePair> B;
        B.SetLength(n);
        for (int32_t i = 0; i < n; i++) {
          B[i] = pareas[m2*n+i] - pareas[m1*n+i];
        }
        int32_t minIdx, maxIdx;
        SizePair area = MaxSum1D(B, n, &minIdx, &maxIdx);
        if (area > bestArea) {
          bestRectIndices.left = minIdx;
          bestRectIndices.top = m1;
          bestRectIndices.right = maxIdx;
          bestRectIndices.bottom = m2;
          bestArea = area;
        }
      }
    }

    bestRect.MoveTo(xaxis.StopAt(bestRectIndices.left),
                    yaxis.StopAt(bestRectIndices.top));
    bestRect.SizeTo(xaxis.StopAt(bestRectIndices.right) - bestRect.X(),
                    yaxis.StopAt(bestRectIndices.bottom) - bestRect.Y());
  }

  return bestRect;
}

std::ostream& operator<<(std::ostream& stream, const nsRegion& m) {
  stream << "[";

  bool first = true;
  for (auto iter = m.RectIter(); !iter.Done(); iter.Next()) {
    if (!first) {
      stream << "; ";
    } else {
      first = true;
    }
    const nsRect& rect = iter.Get();
    stream << rect.X() << "," << rect.Y() << "," << rect.XMost() << "," << rect.YMost();
  }

  stream << "]";
  return stream;
}

void
nsRegion::OutputToStream(std::string aObjName, std::ostream& stream) const
{
  auto iter = RectIter();
  nsRect r = iter.Get();
  stream << "nsRegion " << aObjName << "(nsRect(" << r.X() << ", " << r.Y() << ", " << r.Width() << ", " << r.Height() << "));\n";
  iter.Next();

  for (; !iter.Done(); iter.Next()) {
    nsRect r = iter.Get();
    stream << aObjName << ".OrWith(nsRect(" << r.X() << ", " << r.Y() << ", " << r.Width() << ", " << r.Height() << "));\n";
  }
}

nsCString
nsRegion::ToString() const {
  return nsCString(mozilla::ToString(*this).c_str());
}