DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (409f3966645a)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
#include "VariableUsageHelpers.h"
#include "Utils.h"

std::vector<const Stmt *> getUsageAsRvalue(const ValueDecl *ValueDeclaration,
                                           const FunctionDecl *FuncDecl) {
  std::vector<const Stmt *> UsageStatements;

  // We check the function declaration has a body.
  auto Body = FuncDecl->getBody();
  if (!Body) {
    return std::vector<const Stmt *>();
  }

  // We build a Control Flow Graph (CFG) fron the body of the function
  // declaration.
  std::unique_ptr<CFG> StatementCFG = CFG::buildCFG(
      FuncDecl, Body, &FuncDecl->getASTContext(), CFG::BuildOptions());

  // We iterate through all the CFGBlocks, which basically means that we go over
  // all the possible branches of the code and therefore cover all statements.
  for (auto &Block : *StatementCFG) {
    // We iterate through all the statements of the block.
    for (auto &BlockItem : *Block) {
      Optional<CFGStmt> CFGStatement = BlockItem.getAs<CFGStmt>();
      if (!CFGStatement) {
        continue;
      }

      // FIXME: Right now this function/if chain is very basic and only covers
      // the cases we need for escapesFunction()
      if (auto BinOp = dyn_cast<BinaryOperator>(CFGStatement->getStmt())) {
        // We only care about assignments.
        if (BinOp->getOpcode() != BO_Assign) {
          continue;
        }

        // We want our declaration to be used on the right hand side of the
        // assignment.
        auto DeclRef = dyn_cast<DeclRefExpr>(IgnoreTrivials(BinOp->getRHS()));
        if (!DeclRef) {
          continue;
        }

        if (DeclRef->getDecl() != ValueDeclaration) {
          continue;
        }
      } else if (auto Return = dyn_cast<ReturnStmt>(CFGStatement->getStmt())) {
        // We want our declaration to be used as the expression of the return
        // statement.
        auto DeclRef = dyn_cast_or_null<DeclRefExpr>(
            IgnoreTrivials(Return->getRetValue()));
        if (!DeclRef) {
          continue;
        }

        if (DeclRef->getDecl() != ValueDeclaration) {
          continue;
        }
      } else {
        continue;
      }

      // We didn't early-continue, so we add the statement to the list.
      UsageStatements.push_back(CFGStatement->getStmt());
    }
  }

  return UsageStatements;
}

// We declare our EscapesFunctionError enum to be an error code enum.
namespace std {
template <> struct is_error_code_enum<EscapesFunctionError> : true_type {};
} // namespace std

// We define the EscapesFunctionErrorCategory which contains the error messages
// corresponding to each enum variant.
namespace {
struct EscapesFunctionErrorCategory : std::error_category {
  const char *name() const noexcept override;
  std::string message(int ev) const override;
};

const char *EscapesFunctionErrorCategory::name() const noexcept {
  return "escapes function";
}

std::string EscapesFunctionErrorCategory::message(int ev) const {
  switch (static_cast<EscapesFunctionError>(ev)) {
  case EscapesFunctionError::ConstructorDeclNotFound:
    return "constructor declaration not found";

  case EscapesFunctionError::FunctionDeclNotFound:
    return "function declaration not found";

  case EscapesFunctionError::FunctionIsBuiltin:
    return "function is builtin";

  case EscapesFunctionError::FunctionIsVariadic:
    return "function is variadic";

  case EscapesFunctionError::ExprNotInCall:
    return "expression is not in call";

  case EscapesFunctionError::NoParamForArg:
    return "no parameter for argument";

  case EscapesFunctionError::ArgAndParamNotPointers:
    return "argument and parameter are not pointers";
  }
}

const EscapesFunctionErrorCategory TheEscapesFunctionErrorCategory{};
} // namespace

std::error_code make_error_code(EscapesFunctionError e) {
  return {static_cast<int>(e), TheEscapesFunctionErrorCategory};
}

ErrorOr<std::tuple<const Stmt *, const Decl *>>
escapesFunction(const Expr *Arg, const CXXConstructExpr *Construct) {
  // We get the function declaration corresponding to the call.
  auto CtorDecl = Construct->getConstructor();
  if (!CtorDecl) {
    return EscapesFunctionError::ConstructorDeclNotFound;
  }

  return escapesFunction(Arg, CtorDecl, Construct->getArgs(),
                         Construct->getNumArgs());
}

ErrorOr<std::tuple<const Stmt *, const Decl *>>
escapesFunction(const Expr *Arg, const CallExpr *Call) {
  // We get the function declaration corresponding to the call.
  auto FuncDecl = Call->getDirectCallee();
  if (!FuncDecl) {
    return EscapesFunctionError::FunctionDeclNotFound;
  }

  return escapesFunction(Arg, FuncDecl, Call->getArgs(), Call->getNumArgs());
}

ErrorOr<std::tuple<const Stmt *, const Decl *>>
escapesFunction(const Expr *Arg, const CXXOperatorCallExpr *OpCall) {
  // We get the function declaration corresponding to the operator call.
  auto FuncDecl = OpCall->getDirectCallee();
  if (!FuncDecl) {
    return EscapesFunctionError::FunctionDeclNotFound;
  }

  auto Args = OpCall->getArgs();
  auto NumArgs = OpCall->getNumArgs();
  // If this is an infix binary operator defined as a one-param method, we
  // remove the first argument as it is inserted explicitly and creates a
  // mismatch with the parameters of the method declaration.
  if (isInfixBinaryOp(OpCall) && FuncDecl->getNumParams() == 1) {
    Args++;
    NumArgs--;
  }

  return escapesFunction(Arg, FuncDecl, Args, NumArgs);
}

ErrorOr<std::tuple<const Stmt *, const Decl *>>
escapesFunction(const Expr *Arg, const FunctionDecl *FuncDecl,
                const Expr *const *Arguments, unsigned NumArgs) {
  if (!NumArgs) {
    return std::make_tuple((const Stmt *)nullptr, (const Decl *)nullptr);
  }

  if (FuncDecl->getBuiltinID() != 0 ||
      ASTIsInSystemHeader(FuncDecl->getASTContext(), *FuncDecl)) {
    return EscapesFunctionError::FunctionIsBuiltin;
  }

  // FIXME: should probably be handled at some point, but it's too annoying
  // for now.
  if (FuncDecl->isVariadic()) {
    return EscapesFunctionError::FunctionIsVariadic;
  }

  // We find the argument number corresponding to the Arg expression.
  unsigned ArgNum = 0;
  for (unsigned i = 0; i < NumArgs; i++) {
    if (IgnoreTrivials(Arg) == IgnoreTrivials(Arguments[i])) {
      break;
    }
    ++ArgNum;
  }
  // If we don't find it, we early-return NoneType.
  if (ArgNum >= NumArgs) {
    return EscapesFunctionError::ExprNotInCall;
  }

  // Now we get the associated parameter.
  if (ArgNum >= FuncDecl->getNumParams()) {
    return EscapesFunctionError::NoParamForArg;
  }
  auto Param = FuncDecl->getParamDecl(ArgNum);

  // We want both the argument and the parameter to be of pointer type.
  // FIXME: this is enough for the DanglingOnTemporaryChecker, because the
  // analysed methods only return pointers, but more cases should probably be
  // handled when we want to use this function more broadly.
  if ((!Arg->getType().getNonReferenceType()->isPointerType() &&
       Arg->getType().getNonReferenceType()->isBuiltinType()) ||
      (!Param->getType().getNonReferenceType()->isPointerType() &&
       Param->getType().getNonReferenceType()->isBuiltinType())) {
    return EscapesFunctionError::ArgAndParamNotPointers;
  }

  // We retrieve the usages of the parameter in the function.
  auto Usages = getUsageAsRvalue(Param, FuncDecl);

  // For each usage, we check if it doesn't allow the parameter to escape the
  // function scope.
  for (auto Usage : Usages) {
    // In the case of an assignment.
    if (auto BinOp = dyn_cast<BinaryOperator>(Usage)) {
      // We retrieve the declaration the parameter is assigned to.
      auto DeclRef = dyn_cast<DeclRefExpr>(BinOp->getLHS());
      if (!DeclRef) {
        continue;
      }

      if (auto ParamDeclaration = dyn_cast<ParmVarDecl>(DeclRef->getDecl())) {
        // This is the case where the parameter escapes through another
        // parameter.

        // FIXME: for now we only care about references because we only detect
        // trivial LHS with just a DeclRefExpr, and not more complex cases like:
        // void func(Type* param1, Type** param2) {
        //   *param2 = param1;
        // }
        // This should be fixed when we have better/more helper functions to
        // help deal with this kind of lvalue expressions.
        if (!ParamDeclaration->getType()->isReferenceType()) {
          continue;
        }

        return std::make_tuple(Usage, (const Decl *)ParamDeclaration);
      } else if (auto VarDeclaration = dyn_cast<VarDecl>(DeclRef->getDecl())) {
        // This is the case where the parameter escapes through a global/static
        // variable.
        if (!VarDeclaration->hasGlobalStorage()) {
          continue;
        }

        return std::make_tuple(Usage, (const Decl *)VarDeclaration);
      } else if (auto FieldDeclaration =
                     dyn_cast<FieldDecl>(DeclRef->getDecl())) {
        // This is the case where the parameter escapes through a field.

        return std::make_tuple(Usage, (const Decl *)FieldDeclaration);
      }
    } else if (isa<ReturnStmt>(Usage)) {
      // This is the case where the parameter escapes through the return value
      // of the function.
      if (!FuncDecl->getReturnType()->isPointerType() &&
          !FuncDecl->getReturnType()->isReferenceType()) {
        continue;
      }

      return std::make_tuple(Usage, (const Decl *)FuncDecl);
    }
  }

  // No early-return, this means that we haven't found any case of funciton
  // escaping and that therefore the parameter remains in the function scope.
  return std::make_tuple((const Stmt *)nullptr, (const Decl *)nullptr);
}