DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (56e7b9127e89)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "OGLShaderProgram.h"
#include <stdint.h>                     // for uint32_t
#include <sstream>                      // for ostringstream
#include "gfxEnv.h"
#include "gfxRect.h"                    // for gfxRect
#include "gfxUtils.h"
#include "mozilla/DebugOnly.h"          // for DebugOnly
#include "mozilla/layers/Compositor.h"  // for BlendOpIsMixBlendMode
#include "nsAString.h"
#include "nsString.h"                   // for nsAutoCString
#include "Layers.h"
#include "GLContext.h"

namespace mozilla {
namespace layers {

using namespace std;

#define GAUSSIAN_KERNEL_HALF_WIDTH 11
#define GAUSSIAN_KERNEL_STEP 0.2

void
AddUniforms(ProgramProfileOGL& aProfile)
{
    // This needs to be kept in sync with the KnownUniformName enum
    static const char *sKnownUniformNames[] = {
        "uLayerTransform",
        "uLayerTransformInverse",
        "uMaskTransform",
        "uBackdropTransform",
        "uLayerRects",
        "uMatrixProj",
        "uTextureTransform",
        "uTextureRects",
        "uRenderTargetOffset",
        "uLayerOpacity",
        "uTexture",
        "uYTexture",
        "uCbTexture",
        "uCrTexture",
        "uBlackTexture",
        "uWhiteTexture",
        "uMaskTexture",
        "uBackdropTexture",
        "uRenderColor",
        "uTexCoordMultiplier",
        "uCbCrTexCoordMultiplier",
        "uMaskCoordMultiplier",
        "uTexturePass2",
        "uColorMatrix",
        "uColorMatrixVector",
        "uBlurRadius",
        "uBlurOffset",
        "uBlurAlpha",
        "uBlurGaussianKernel",
        "uSSEdges",
        "uViewportSize",
        "uVisibleCenter",
        "uYuvColorMatrix",
        nullptr
    };

    for (int i = 0; sKnownUniformNames[i] != nullptr; ++i) {
        aProfile.mUniforms[i].mNameString = sKnownUniformNames[i];
        aProfile.mUniforms[i].mName = (KnownUniform::KnownUniformName) i;
    }
}

void
ShaderConfigOGL::SetRenderColor(bool aEnabled)
{
  SetFeature(ENABLE_RENDER_COLOR, aEnabled);
}

void
ShaderConfigOGL::SetTextureTarget(GLenum aTarget)
{
  SetFeature(ENABLE_TEXTURE_EXTERNAL | ENABLE_TEXTURE_RECT, false);
  switch (aTarget) {
  case LOCAL_GL_TEXTURE_EXTERNAL:
    SetFeature(ENABLE_TEXTURE_EXTERNAL, true);
    break;
  case LOCAL_GL_TEXTURE_RECTANGLE_ARB:
    SetFeature(ENABLE_TEXTURE_RECT, true);
    break;
  }
}

void
ShaderConfigOGL::SetMaskTextureTarget(GLenum aTarget)
{
  if (aTarget == LOCAL_GL_TEXTURE_RECTANGLE_ARB) {
    SetFeature(ENABLE_MASK_TEXTURE_RECT, true);
  } else {
    MOZ_ASSERT(aTarget == LOCAL_GL_TEXTURE_2D);
    SetFeature(ENABLE_MASK_TEXTURE_RECT, false);
  }
}

void
ShaderConfigOGL::SetRBSwap(bool aEnabled)
{
  SetFeature(ENABLE_TEXTURE_RB_SWAP, aEnabled);
}

void
ShaderConfigOGL::SetNoAlpha(bool aEnabled)
{
  SetFeature(ENABLE_TEXTURE_NO_ALPHA, aEnabled);
}

void
ShaderConfigOGL::SetOpacity(bool aEnabled)
{
  SetFeature(ENABLE_OPACITY, aEnabled);
}

void
ShaderConfigOGL::SetYCbCr(bool aEnabled)
{
  SetFeature(ENABLE_TEXTURE_YCBCR, aEnabled);
  MOZ_ASSERT(!(mFeatures & ENABLE_TEXTURE_NV12));
}

void
ShaderConfigOGL::SetColorMultiplier(uint32_t aMultiplier)
{
  MOZ_ASSERT(mFeatures & ENABLE_TEXTURE_YCBCR, "Multiplier only supported with YCbCr!");
  mMultiplier = aMultiplier;
}

void
ShaderConfigOGL::SetNV12(bool aEnabled)
{
  SetFeature(ENABLE_TEXTURE_NV12, aEnabled);
  MOZ_ASSERT(!(mFeatures & ENABLE_TEXTURE_YCBCR));
}

void
ShaderConfigOGL::SetComponentAlpha(bool aEnabled)
{
  SetFeature(ENABLE_TEXTURE_COMPONENT_ALPHA, aEnabled);
}

void
ShaderConfigOGL::SetColorMatrix(bool aEnabled)
{
  SetFeature(ENABLE_COLOR_MATRIX, aEnabled);
}

void
ShaderConfigOGL::SetBlur(bool aEnabled)
{
  SetFeature(ENABLE_BLUR, aEnabled);
}

void
ShaderConfigOGL::SetMask(bool aEnabled)
{
  SetFeature(ENABLE_MASK, aEnabled);
}

void
ShaderConfigOGL::SetNoPremultipliedAlpha()
{
  SetFeature(ENABLE_NO_PREMUL_ALPHA, true);
}

void
ShaderConfigOGL::SetDEAA(bool aEnabled)
{
  SetFeature(ENABLE_DEAA, aEnabled);
}

void
ShaderConfigOGL::SetCompositionOp(gfx::CompositionOp aOp)
{
  mCompositionOp = aOp;
}

void
ShaderConfigOGL::SetDynamicGeometry(bool aEnabled)
{
  SetFeature(ENABLE_DYNAMIC_GEOMETRY, aEnabled);
}

/* static */ ProgramProfileOGL
ProgramProfileOGL::GetProfileFor(ShaderConfigOGL aConfig)
{
  ProgramProfileOGL result;
  ostringstream fs, vs;

  AddUniforms(result);

  gfx::CompositionOp blendOp = aConfig.mCompositionOp;

  vs << "#ifdef GL_ES" << endl;
  vs << "#define EDGE_PRECISION mediump" << endl;
  vs << "#else" << endl;
  vs << "#define EDGE_PRECISION" << endl;
  vs << "#endif" << endl;
  vs << "uniform mat4 uMatrixProj;" << endl;
  vs << "uniform vec4 uLayerRects[4];" << endl;
  vs << "uniform mat4 uLayerTransform;" << endl;
  if (aConfig.mFeatures & ENABLE_DEAA) {
    vs << "uniform mat4 uLayerTransformInverse;" << endl;
    vs << "uniform EDGE_PRECISION vec3 uSSEdges[4];" << endl;
    vs << "uniform vec2 uVisibleCenter;" << endl;
    vs << "uniform vec2 uViewportSize;" << endl;
  }
  vs << "uniform vec2 uRenderTargetOffset;" << endl;

  if (!(aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY)) {
    vs << "attribute vec4 aCoord;" << endl;
  } else {
    vs << "attribute vec2 aCoord;" << endl;
  }

  result.mAttributes.AppendElement(Pair<nsCString, GLuint> {"aCoord", 0});

  if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
    vs << "uniform mat4 uTextureTransform;" << endl;
    vs << "uniform vec4 uTextureRects[4];" << endl;
    vs << "varying vec2 vTexCoord;" << endl;

    if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) {
      vs << "attribute vec2 aTexCoord;" << endl;
      result.mAttributes.AppendElement(Pair<nsCString, GLuint> {"aTexCoord", 1});
    }
  }

  if (BlendOpIsMixBlendMode(blendOp)) {
    vs << "uniform mat4 uBackdropTransform;" << endl;
    vs << "varying vec2 vBackdropCoord;" << endl;
  }

  if (aConfig.mFeatures & ENABLE_MASK) {
    vs << "uniform mat4 uMaskTransform;" << endl;
    vs << "varying vec3 vMaskCoord;" << endl;
  }

  vs << "void main() {" << endl;

  if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) {
    vs << "  vec4 finalPosition = vec4(aCoord.xy, 0.0, 1.0);" << endl;
  } else {
    vs << "  int vertexID = int(aCoord.w);" << endl;
    vs << "  vec4 layerRect = uLayerRects[vertexID];" << endl;
    vs << "  vec4 finalPosition = vec4(aCoord.xy * layerRect.zw + layerRect.xy, 0.0, 1.0);" << endl;
  }

  vs << "  finalPosition = uLayerTransform * finalPosition;" << endl;

  if (aConfig.mFeatures & ENABLE_DEAA) {
    // XXX kip - The DEAA shader could be made simpler if we switch to
    //           using dynamic vertex buffers instead of sending everything
    //           in through uniforms.  This would enable passing information
    //           about how to dilate each vertex explicitly and eliminate the
    //           need to extrapolate this with the sub-pixel coverage
    //           calculation in the vertex shader.

    // Calculate the screen space position of this vertex, in screen pixels
    vs << "  vec4 ssPos = finalPosition;" << endl;
    vs << "  ssPos.xy -= uRenderTargetOffset * finalPosition.w;" << endl;
    vs << "  ssPos = uMatrixProj * ssPos;" << endl;
    vs << "  ssPos.xy = ((ssPos.xy/ssPos.w)*0.5+0.5)*uViewportSize;" << endl;

    if (aConfig.mFeatures & ENABLE_MASK ||
        !(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
      vs << "  vec4 coordAdjusted;" << endl;
      vs << "  coordAdjusted.xy = aCoord.xy;" << endl;
    }

    // It is necessary to dilate edges away from uVisibleCenter to ensure that
    // fragments with less than 50% sub-pixel coverage will be shaded.
    // This offset is applied when the sub-pixel coverage of the vertex is
    // less than 100%.  Expanding by 0.5 pixels in screen space is sufficient
    // to include these pixels.
    vs << "  if (dot(uSSEdges[0], vec3(ssPos.xy, 1.0)) < 1.5 ||" << endl;
    vs << "      dot(uSSEdges[1], vec3(ssPos.xy, 1.0)) < 1.5 ||" << endl;
    vs << "      dot(uSSEdges[2], vec3(ssPos.xy, 1.0)) < 1.5 ||" << endl;
    vs << "      dot(uSSEdges[3], vec3(ssPos.xy, 1.0)) < 1.5) {" << endl;
    // If the shader reaches this branch, then this vertex is on the edge of
    // the layer's visible rect and should be dilated away from the center of
    // the visible rect.  We don't want to hit this for inner facing
    // edges between tiles, as the pixels may be covered twice without clipping
    // against uSSEdges.  If all edges were dilated, it would result in
    // artifacts visible within semi-transparent layers with multiple tiles.
    vs << "    vec4 visibleCenter = uLayerTransform * vec4(uVisibleCenter, 0.0, 1.0);" << endl;
    vs << "    vec2 dilateDir = finalPosition.xy / finalPosition.w - visibleCenter.xy / visibleCenter.w;" << endl;
    vs << "    vec2 offset = sign(dilateDir) * 0.5;" << endl;
    vs << "    finalPosition.xy += offset * finalPosition.w;" << endl;
    if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
      // We must adjust the texture coordinates to compensate for the dilation
      vs << "    coordAdjusted = uLayerTransformInverse * finalPosition;" << endl;
      vs << "    coordAdjusted /= coordAdjusted.w;" << endl;

      if (!(aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY)) {
        vs << "    coordAdjusted.xy -= layerRect.xy;" << endl;
        vs << "    coordAdjusted.xy /= layerRect.zw;" << endl;
      }
    }
    vs << "  }" << endl;

    if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
      if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) {
        vs << "  vTexCoord = (uTextureTransform * vec4(aTexCoord, 0.0, 1.0)).xy;" << endl;
      } else {
        vs << "  vec4 textureRect = uTextureRects[vertexID];" << endl;
        vs << "  vec2 texCoord = coordAdjusted.xy * textureRect.zw + textureRect.xy;" << endl;
        vs << "  vTexCoord = (uTextureTransform * vec4(texCoord, 0.0, 1.0)).xy;" << endl;
      }
    }
  } else if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
    if (aConfig.mFeatures & ENABLE_DYNAMIC_GEOMETRY) {
      vs << "  vTexCoord = (uTextureTransform * vec4(aTexCoord, 0.0, 1.0)).xy;" << endl;
    } else {
      vs << "  vec4 textureRect = uTextureRects[vertexID];" << endl;
      vs << "  vec2 texCoord = aCoord.xy * textureRect.zw + textureRect.xy;" << endl;
      vs << "  vTexCoord = (uTextureTransform * vec4(texCoord, 0.0, 1.0)).xy;" << endl;
    }
  }

  if (aConfig.mFeatures & ENABLE_MASK) {
    vs << "  vMaskCoord.xy = (uMaskTransform * (finalPosition / finalPosition.w)).xy;" << endl;
    // correct for perspective correct interpolation, see comment in D3D11 shader
    vs << "  vMaskCoord.z = 1.0;" << endl;
    vs << "  vMaskCoord *= finalPosition.w;" << endl;
  }
  vs << "  finalPosition.xy -= uRenderTargetOffset * finalPosition.w;" << endl;
  vs << "  finalPosition = uMatrixProj * finalPosition;" << endl;
  if (BlendOpIsMixBlendMode(blendOp)) {
    // Translate from clip space (-1, 1) to (0..1), apply the backdrop
    // transform, then invert the y-axis.
    vs << "  vBackdropCoord.x = (finalPosition.x + 1.0) / 2.0;" << endl;
    vs << "  vBackdropCoord.y = 1.0 - (finalPosition.y + 1.0) / 2.0;" << endl;
    vs << "  vBackdropCoord = (uBackdropTransform * vec4(vBackdropCoord.xy, 0.0, 1.0)).xy;" << endl;
    vs << "  vBackdropCoord.y = 1.0 - vBackdropCoord.y;" << endl;
  }
  vs << "  gl_Position = finalPosition;" << endl;
  vs << "}" << endl;

  if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
    fs << "#extension GL_ARB_texture_rectangle : require" << endl;
  }
  if (aConfig.mFeatures & ENABLE_TEXTURE_EXTERNAL) {
    fs << "#extension GL_OES_EGL_image_external : require" << endl;
  }
  fs << "#ifdef GL_ES" << endl;
  fs << "precision mediump float;" << endl;
  fs << "#define COLOR_PRECISION lowp" << endl;
  fs << "#define EDGE_PRECISION mediump" << endl;
  fs << "#else" << endl;
  fs << "#define COLOR_PRECISION" << endl;
  fs << "#define EDGE_PRECISION" << endl;
  fs << "#endif" << endl;
  if (aConfig.mFeatures & ENABLE_RENDER_COLOR) {
    fs << "uniform COLOR_PRECISION vec4 uRenderColor;" << endl;
  } else {
    // for tiling, texcoord can be greater than the lowfp range
    fs << "varying vec2 vTexCoord;" << endl;
    if (aConfig.mFeatures & ENABLE_BLUR) {
      fs << "uniform bool uBlurAlpha;" << endl;
      fs << "uniform vec2 uBlurRadius;" << endl;
      fs << "uniform vec2 uBlurOffset;" << endl;
      fs << "uniform float uBlurGaussianKernel[" << GAUSSIAN_KERNEL_HALF_WIDTH << "];" << endl;
    }
    if (aConfig.mFeatures & ENABLE_COLOR_MATRIX) {
      fs << "uniform mat4 uColorMatrix;" << endl;
      fs << "uniform vec4 uColorMatrixVector;" << endl;
    }
    if (aConfig.mFeatures & ENABLE_OPACITY) {
      fs << "uniform COLOR_PRECISION float uLayerOpacity;" << endl;
    }
  }
  if (BlendOpIsMixBlendMode(blendOp)) {
    fs << "varying vec2 vBackdropCoord;" << endl;
  }

  const char *sampler2D = "sampler2D";
  const char *texture2D = "texture2D";

  if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
    fs << "uniform vec2 uTexCoordMultiplier;" << endl;
    if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR ||
        aConfig.mFeatures & ENABLE_TEXTURE_NV12) {
      fs << "uniform vec2 uCbCrTexCoordMultiplier;" << endl;
    }
    sampler2D = "sampler2DRect";
    texture2D = "texture2DRect";
  }

  const char *maskSampler2D = "sampler2D";
  const char *maskTexture2D = "texture2D";

  if (aConfig.mFeatures & ENABLE_MASK &&
      aConfig.mFeatures & ENABLE_MASK_TEXTURE_RECT) {
    fs << "uniform vec2 uMaskCoordMultiplier;" << endl;
    maskSampler2D = "sampler2DRect";
    maskTexture2D = "texture2DRect";
  }

  if (aConfig.mFeatures & ENABLE_TEXTURE_EXTERNAL) {
    sampler2D = "samplerExternalOES";
  }

  if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR) {
    fs << "uniform " << sampler2D << " uYTexture;" << endl;
    fs << "uniform " << sampler2D << " uCbTexture;" << endl;
    fs << "uniform " << sampler2D << " uCrTexture;" << endl;
    fs << "uniform mat3 uYuvColorMatrix;" << endl;
  } else if (aConfig.mFeatures & ENABLE_TEXTURE_NV12) {
    fs << "uniform " << sampler2D << " uYTexture;" << endl;
    fs << "uniform " << sampler2D << " uCbTexture;" << endl;
  } else if (aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA) {
    fs << "uniform " << sampler2D << " uBlackTexture;" << endl;
    fs << "uniform " << sampler2D << " uWhiteTexture;" << endl;
    fs << "uniform bool uTexturePass2;" << endl;
  } else {
    fs << "uniform " << sampler2D << " uTexture;" << endl;
  }

  if (BlendOpIsMixBlendMode(blendOp)) {
    // Component alpha should be flattened away inside blend containers.
    MOZ_ASSERT(!(aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA));

    fs << "uniform sampler2D uBackdropTexture;" << endl;
  }

  if (aConfig.mFeatures & ENABLE_MASK) {
    fs << "varying vec3 vMaskCoord;" << endl;
    fs << "uniform " << maskSampler2D << " uMaskTexture;" << endl;
  }

  if (aConfig.mFeatures & ENABLE_DEAA) {
    fs << "uniform EDGE_PRECISION vec3 uSSEdges[4];" << endl;
  }

  if (BlendOpIsMixBlendMode(blendOp)) {
    BuildMixBlender(aConfig, fs);
  }

  if (!(aConfig.mFeatures & ENABLE_RENDER_COLOR)) {
    fs << "vec4 sample(vec2 coord) {" << endl;
    fs << "  vec4 color;" << endl;
    if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR ||
        aConfig.mFeatures & ENABLE_TEXTURE_NV12) {
      if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR) {
        if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
          fs << "  COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord * uTexCoordMultiplier).r;" << endl;
          fs << "  COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord * uCbCrTexCoordMultiplier).r;" << endl;
          fs << "  COLOR_PRECISION float cr = " << texture2D << "(uCrTexture, coord * uCbCrTexCoordMultiplier).r;" << endl;
        } else {
          fs << "  COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord).r;" << endl;
          fs << "  COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord).r;" << endl;
          fs << "  COLOR_PRECISION float cr = " << texture2D << "(uCrTexture, coord).r;" << endl;
        }
      } else {
        if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
          fs << "  COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord * uTexCoordMultiplier).r;" << endl;
          fs << "  COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord * uCbCrTexCoordMultiplier).r;" << endl;
          fs << "  COLOR_PRECISION float cr = " << texture2D << "(uCbTexture, coord * uCbCrTexCoordMultiplier).a;" << endl;
        } else {
          fs << "  COLOR_PRECISION float y = " << texture2D << "(uYTexture, coord).r;" << endl;
          fs << "  COLOR_PRECISION float cb = " << texture2D << "(uCbTexture, coord).r;" << endl;
          fs << "  COLOR_PRECISION float cr = " << texture2D << "(uCbTexture, coord).a;" << endl;
        }
      }
      fs << "  vec3 yuv = vec3(y, cb, cr);" << endl;
      if (aConfig.mMultiplier != 1) {
        fs << "  yuv *= " << aConfig.mMultiplier << ".0;" << endl;
      }
      fs << "  vec3 coeff = vec3(0.06275, 0.50196, 0.50196 );" << endl;
      fs << "  yuv -= coeff;" << endl;
      fs << "  color.rgb = uYuvColorMatrix * yuv;" << endl;
      fs << "  color.a = 1.0;" << endl;
    } else if (aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA) {
      if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
        fs << "  COLOR_PRECISION vec3 onBlack = " << texture2D << "(uBlackTexture, coord * uTexCoordMultiplier).rgb;" << endl;
        fs << "  COLOR_PRECISION vec3 onWhite = " << texture2D << "(uWhiteTexture, coord * uTexCoordMultiplier).rgb;" << endl;
      } else {
        fs << "  COLOR_PRECISION vec3 onBlack = " << texture2D << "(uBlackTexture, coord).rgb;" << endl;
        fs << "  COLOR_PRECISION vec3 onWhite = " << texture2D << "(uWhiteTexture, coord).rgb;" << endl;
      }
      fs << "  COLOR_PRECISION vec4 alphas = (1.0 - onWhite + onBlack).rgbg;" << endl;
      fs << "  if (uTexturePass2)" << endl;
      fs << "    color = vec4(onBlack, alphas.a);" << endl;
      fs << "  else" << endl;
      fs << "    color = alphas;" << endl;
    } else {
      if (aConfig.mFeatures & ENABLE_TEXTURE_RECT) {
        fs << "  color = " << texture2D << "(uTexture, coord * uTexCoordMultiplier);" << endl;
      } else {
        fs << "  color = " << texture2D << "(uTexture, coord);" << endl;
      }
    }
    if (aConfig.mFeatures & ENABLE_TEXTURE_RB_SWAP) {
      fs << "  color = color.bgra;" << endl;
    }
    if (aConfig.mFeatures & ENABLE_TEXTURE_NO_ALPHA) {
      fs << "  color = vec4(color.rgb, 1.0);" << endl;
    }
    fs << "  return color;" << endl;
    fs << "}" << endl;
    if (aConfig.mFeatures & ENABLE_BLUR) {
      fs << "vec4 sampleAtRadius(vec2 coord, float radius) {" << endl;
      fs << "  coord += uBlurOffset;" << endl;
      fs << "  coord += radius * uBlurRadius;" << endl;
      fs << "  if (coord.x < 0. || coord.y < 0. || coord.x > 1. || coord.y > 1.)" << endl;
      fs << "    return vec4(0, 0, 0, 0);" << endl;
      fs << "  return sample(coord);" << endl;
      fs << "}" << endl;
      fs << "vec4 blur(vec4 color, vec2 coord) {" << endl;
      fs << "  vec4 total = color * uBlurGaussianKernel[0];" << endl;
      fs << "  for (int i = 1; i < " << GAUSSIAN_KERNEL_HALF_WIDTH << "; ++i) {" << endl;
      fs << "    float r = float(i) * " << GAUSSIAN_KERNEL_STEP << ";" << endl;
      fs << "    float k = uBlurGaussianKernel[i];" << endl;
      fs << "    total += sampleAtRadius(coord, r) * k;" << endl;
      fs << "    total += sampleAtRadius(coord, -r) * k;" << endl;
      fs << "  }" << endl;
      fs << "  if (uBlurAlpha) {" << endl;
      fs << "    color *= total.a;" << endl;
      fs << "  } else {" << endl;
      fs << "    color = total;" << endl;
      fs << "  }" << endl;
      fs << "  return color;" << endl;
      fs << "}" << endl;
    }
  }
  fs << "void main() {" << endl;
  if (aConfig.mFeatures & ENABLE_RENDER_COLOR) {
    fs << "  vec4 color = uRenderColor;" << endl;
  } else {
    fs << "  vec4 color = sample(vTexCoord);" << endl;
    if (aConfig.mFeatures & ENABLE_BLUR) {
      fs << "  color = blur(color, vTexCoord);" << endl;
    }
    if (aConfig.mFeatures & ENABLE_COLOR_MATRIX) {
      fs << "  color = uColorMatrix * vec4(color.rgb / color.a, color.a) + uColorMatrixVector;" << endl;
      fs << "  color.rgb *= color.a;" << endl;
    }
    if (aConfig.mFeatures & ENABLE_OPACITY) {
      fs << "  color *= uLayerOpacity;" << endl;
    }
  }
  if (aConfig.mFeatures & ENABLE_DEAA) {
    // Calculate the sub-pixel coverage of the pixel and modulate its opacity
    // by that amount to perform DEAA.
    fs << "  vec3 ssPos = vec3(gl_FragCoord.xy, 1.0);" << endl;
    fs << "  float deaaCoverage = clamp(dot(uSSEdges[0], ssPos), 0.0, 1.0);" << endl;
    fs << "  deaaCoverage *= clamp(dot(uSSEdges[1], ssPos), 0.0, 1.0);" << endl;
    fs << "  deaaCoverage *= clamp(dot(uSSEdges[2], ssPos), 0.0, 1.0);" << endl;
    fs << "  deaaCoverage *= clamp(dot(uSSEdges[3], ssPos), 0.0, 1.0);" << endl;
    fs << "  color *= deaaCoverage;" << endl;
  }
  if (BlendOpIsMixBlendMode(blendOp)) {
    fs << "  vec4 backdrop = texture2D(uBackdropTexture, vBackdropCoord);" << endl;
    fs << "  color = mixAndBlend(backdrop, color);" << endl;
  }
  if (aConfig.mFeatures & ENABLE_MASK) {
    fs << "  vec2 maskCoords = vMaskCoord.xy / vMaskCoord.z;" << endl;
    if (aConfig.mFeatures & ENABLE_MASK_TEXTURE_RECT) {
      fs << "  COLOR_PRECISION float mask = " << maskTexture2D << "(uMaskTexture, maskCoords * uMaskCoordMultiplier).r;" << endl;
    } else {
      fs << "  COLOR_PRECISION float mask = " << maskTexture2D << "(uMaskTexture, maskCoords).r;" << endl;
    }
    fs << "  color *= mask;" << endl;
  } else {
    fs << "  COLOR_PRECISION float mask = 1.0;" << endl;
    fs << "  color *= mask;" << endl;
  }
  fs << "  gl_FragColor = color;" << endl;
  fs << "}" << endl;

  result.mVertexShaderString = vs.str();
  result.mFragmentShaderString = fs.str();

  if (aConfig.mFeatures & ENABLE_RENDER_COLOR) {
    result.mTextureCount = 0;
  } else {
    if (aConfig.mFeatures & ENABLE_TEXTURE_YCBCR) {
      result.mTextureCount = 3;
    } else if (aConfig.mFeatures & ENABLE_TEXTURE_NV12) {
      result.mTextureCount = 2;
    } else if (aConfig.mFeatures & ENABLE_TEXTURE_COMPONENT_ALPHA) {
      result.mTextureCount = 2;
    } else {
      result.mTextureCount = 1;
    }
  }
  if (aConfig.mFeatures & ENABLE_MASK) {
    result.mTextureCount = 1;
  }
  if (BlendOpIsMixBlendMode(blendOp)) {
    result.mTextureCount += 1;
  }

  return result;
}

void
ProgramProfileOGL::BuildMixBlender(const ShaderConfigOGL& aConfig, std::ostringstream& fs)
{
  // From the "Compositing and Blending Level 1" spec.
  // Generate helper functions first.
  switch (aConfig.mCompositionOp) {
  case gfx::CompositionOp::OP_OVERLAY:
  case gfx::CompositionOp::OP_HARD_LIGHT:
    // Note: we substitute (2*src-1) into the screen formula below.
    fs << "float hardlight(float dest, float src) {" << endl;
    fs << "  if (src <= 0.5) {" << endl;
    fs << "    return dest * (2.0 * src);" << endl;
    fs << "  } else {" << endl;
    fs << "    return 2.0*dest + 2.0*src - 1.0 - 2.0*dest*src;" << endl;
    fs << "  }" << endl;
    fs << "}" << endl;
    break;
  case gfx::CompositionOp::OP_COLOR_DODGE:
    fs << "float dodge(float dest, float src) {" << endl;
    fs << "  if (dest == 0.0) {" << endl;
    fs << "    return 0.0;" << endl;
    fs << "  } else if (src == 1.0) {" << endl;
    fs << "    return 1.0;" << endl;
    fs << "  } else {" << endl;
    fs << "    return min(1.0, dest / (1.0 - src));" << endl;
    fs << "  }" << endl;
    fs << "}" << endl;
    break;
  case gfx::CompositionOp::OP_COLOR_BURN:
    fs << "float burn(float dest, float src) {" << endl;
    fs << "  if (dest == 1.0) {" << endl;
    fs << "    return 1.0;" << endl;
    fs << "  } else if (src == 0.0) {" << endl;
    fs << "    return 0.0;" << endl;
    fs << "  } else {" << endl;
    fs << "    return 1.0 - min(1.0, (1.0 - dest) / src);" << endl;
    fs << "  }" << endl;
    fs << "}" << endl;
    break;
  case gfx::CompositionOp::OP_SOFT_LIGHT:
    fs << "float darken(float dest) {" << endl;
    fs << "  if (dest <= 0.25) {" << endl;
    fs << "    return ((16.0 * dest - 12.0) * dest + 4.0) * dest;" << endl;
    fs << "  } else {" << endl;
    fs << "    return sqrt(dest);" << endl;
    fs << "  }" << endl;
    fs << "}" << endl;
    fs << "float softlight(float dest, float src) {" << endl;
    fs << "  if (src <= 0.5) {" << endl;
    fs << "    return dest - (1.0 - 2.0 * src) * dest * (1.0 - dest);" << endl;
    fs << "  } else {" << endl;
    fs << "    return dest + (2.0 * src - 1.0) * (darken(dest) - dest);" << endl;
    fs << "  }" << endl;
    fs << "}" << endl;
    break;
  case gfx::CompositionOp::OP_HUE:
  case gfx::CompositionOp::OP_SATURATION:
  case gfx::CompositionOp::OP_COLOR:
  case gfx::CompositionOp::OP_LUMINOSITY:
    fs << "float Lum(vec3 c) {" << endl;
    fs << "  return dot(vec3(0.3, 0.59, 0.11), c);" << endl;
    fs << "}" << endl;
    fs << "vec3 ClipColor(vec3 c) {" << endl;
    fs << "  float L = Lum(c);" << endl;
    fs << "  float n = min(min(c.r, c.g), c.b);" << endl;
    fs << "  float x = max(max(c.r, c.g), c.b);" << endl;
    fs << "  if (n < 0.0) {" << endl;
    fs << "    c = L + (((c - L) * L) / (L - n));" << endl;
    fs << "  }" << endl;
    fs << "  if (x > 1.0) {" << endl;
    fs << "    c = L + (((c - L) * (1.0 - L)) / (x - L));" << endl;
    fs << "  }" << endl;
    fs << "  return c;" << endl;
    fs << "}" << endl;
    fs << "vec3 SetLum(vec3 c, float L) {" << endl;
    fs << "  float d = L - Lum(c);" << endl;
    fs << "  return ClipColor(vec3(" << endl;
    fs << "    c.r + d," << endl;
    fs << "    c.g + d," << endl;
    fs << "    c.b + d));" << endl;
    fs << "}" << endl;
    fs << "float Sat(vec3 c) {" << endl;
    fs << "  return max(max(c.r, c.g), c.b) - min(min(c.r, c.g), c.b);" << endl;
    fs << "}" << endl;

    // To use this helper, re-arrange rgb such that r=min, g=mid, and b=max.
    fs << "vec3 SetSatInner(vec3 c, float s) {" << endl;
    fs << "  if (c.b > c.r) {" << endl;
    fs << "    c.g = (((c.g - c.r) * s) / (c.b - c.r));" << endl;
    fs << "    c.b = s;" << endl;
    fs << "  } else {" << endl;
    fs << "    c.gb = vec2(0.0, 0.0);" << endl;
    fs << "  }" << endl;
    fs << "  return vec3(0.0, c.gb);" << endl;
    fs << "}" << endl;

    fs << "vec3 SetSat(vec3 c, float s) {" << endl;
    fs << "  if (c.r <= c.g) {" << endl;
    fs << "    if (c.g <= c.b) {" << endl;
    fs << "      c.rgb = SetSatInner(c.rgb, s);" << endl;
    fs << "    } else if (c.r <= c.b) {" << endl;
    fs << "      c.rbg = SetSatInner(c.rbg, s);" << endl;
    fs << "    } else {" << endl;
    fs << "      c.brg = SetSatInner(c.brg, s);" << endl;
    fs << "    }" << endl;
    fs << "  } else if (c.r <= c.b) {" << endl;
    fs << "    c.grb = SetSatInner(c.grb, s);" << endl;
    fs << "  } else if (c.g <= c.b) {" << endl;
    fs << "    c.gbr = SetSatInner(c.gbr, s);" << endl;
    fs << "  } else {" << endl;
    fs << "    c.bgr = SetSatInner(c.bgr, s);" << endl;
    fs << "  }" << endl;
    fs << "  return c;" << endl;
    fs << "}" << endl;
    break;
  default:
    break;
  }

  // Generate the main blending helper.
  fs << "vec3 blend(vec3 dest, vec3 src) {" << endl;
  switch (aConfig.mCompositionOp) {
  case gfx::CompositionOp::OP_MULTIPLY:
    fs << "  return dest * src;" << endl;
    break;
  case gfx::CompositionOp::OP_SCREEN:
    fs << "  return dest + src - (dest * src);" << endl;
    break;
  case gfx::CompositionOp::OP_OVERLAY:
    fs << "  return vec3(" << endl;
    fs << "    hardlight(src.r, dest.r)," << endl;
    fs << "    hardlight(src.g, dest.g)," << endl;
    fs << "    hardlight(src.b, dest.b));" << endl;
    break;
  case gfx::CompositionOp::OP_DARKEN:
    fs << "  return min(dest, src);" << endl;
    break;
  case gfx::CompositionOp::OP_LIGHTEN:
    fs << "  return max(dest, src);" << endl;
    break;
  case gfx::CompositionOp::OP_COLOR_DODGE:
    fs << "  return vec3(" << endl;
    fs << "    dodge(dest.r, src.r)," << endl;
    fs << "    dodge(dest.g, src.g)," << endl;
    fs << "    dodge(dest.b, src.b));" << endl;
    break;
  case gfx::CompositionOp::OP_COLOR_BURN:
    fs << "  return vec3(" << endl;
    fs << "    burn(dest.r, src.r)," << endl;
    fs << "    burn(dest.g, src.g)," << endl;
    fs << "    burn(dest.b, src.b));" << endl;
    break;
  case gfx::CompositionOp::OP_HARD_LIGHT:
    fs << "  return vec3(" << endl;
    fs << "    hardlight(dest.r, src.r)," << endl;
    fs << "    hardlight(dest.g, src.g)," << endl;
    fs << "    hardlight(dest.b, src.b));" << endl;
    break;
  case gfx::CompositionOp::OP_SOFT_LIGHT:
    fs << "  return vec3(" << endl;
    fs << "    softlight(dest.r, src.r)," << endl;
    fs << "    softlight(dest.g, src.g)," << endl;
    fs << "    softlight(dest.b, src.b));" << endl;
    break;
  case gfx::CompositionOp::OP_DIFFERENCE:
    fs << "  return abs(dest - src);" << endl;
    break;
  case gfx::CompositionOp::OP_EXCLUSION:
    fs << "  return dest + src - 2.0*dest*src;" << endl;
    break;
  case gfx::CompositionOp::OP_HUE:
    fs << "  return SetLum(SetSat(src, Sat(dest)), Lum(dest));" << endl;
    break;
  case gfx::CompositionOp::OP_SATURATION:
    fs << "  return SetLum(SetSat(dest, Sat(src)), Lum(dest));" << endl;
    break;
  case gfx::CompositionOp::OP_COLOR:
    fs << "  return SetLum(src, Lum(dest));" << endl;
    break;
  case gfx::CompositionOp::OP_LUMINOSITY:
    fs << "  return SetLum(dest, Lum(src));" << endl;
    break;
  default:
    MOZ_ASSERT_UNREACHABLE("unknown blend mode");
  }
  fs << "}" << endl;

  // Generate the mix-blend function the fragment shader will call.
  fs << "vec4 mixAndBlend(vec4 backdrop, vec4 color) {" << endl;

  // Shortcut when the backdrop or source alpha is 0, otherwise we may leak
  // Infinity into the blend function and return incorrect results.
  fs << "  if (backdrop.a == 0.0) {" << endl;
  fs << "    return color;" << endl;
  fs << "  }" << endl;
  fs << "  if (color.a == 0.0) {" << endl;
  fs << "    return vec4(0.0, 0.0, 0.0, 0.0);" << endl;
  fs << "  }" << endl;

  // The spec assumes there is no premultiplied alpha. The backdrop is always
  // premultiplied, so undo the premultiply. If the source is premultiplied we
  // must fix that as well.
  fs << "  backdrop.rgb /= backdrop.a;" << endl;
  if (!(aConfig.mFeatures & ENABLE_NO_PREMUL_ALPHA)) {
    fs << "  color.rgb /= color.a;" << endl;
  }
  fs << "  vec3 blended = blend(backdrop.rgb, color.rgb);" << endl;
  fs << "  color.rgb = (1.0 - backdrop.a) * color.rgb + backdrop.a * blended.rgb;" << endl;
  fs << "  color.rgb *= color.a;" << endl;
  fs << "  return color;" << endl;
  fs << "}" << endl;
}

ShaderProgramOGL::ShaderProgramOGL(GLContext* aGL, const ProgramProfileOGL& aProfile)
  : mGL(aGL)
  , mProgram(0)
  , mProfile(aProfile)
  , mProgramState(STATE_NEW)
{
}

ShaderProgramOGL::~ShaderProgramOGL()
{
  if (mProgram <= 0) {
    return;
  }

  RefPtr<GLContext> ctx = mGL->GetSharedContext();
  if (!ctx) {
    ctx = mGL;
  }
  ctx->MakeCurrent();
  ctx->fDeleteProgram(mProgram);
}

bool
ShaderProgramOGL::Initialize()
{
  NS_ASSERTION(mProgramState == STATE_NEW, "Shader program has already been initialised");

  ostringstream vs, fs;
  for (uint32_t i = 0; i < mProfile.mDefines.Length(); ++i) {
    vs << mProfile.mDefines[i] << endl;
    fs << mProfile.mDefines[i] << endl;
  }
  vs << mProfile.mVertexShaderString << endl;
  fs << mProfile.mFragmentShaderString << endl;

  if (!CreateProgram(vs.str().c_str(), fs.str().c_str())) {
    mProgramState = STATE_ERROR;
    return false;
  }

  mProgramState = STATE_OK;

  for (uint32_t i = 0; i < KnownUniform::KnownUniformCount; ++i) {
    mProfile.mUniforms[i].mLocation =
      mGL->fGetUniformLocation(mProgram, mProfile.mUniforms[i].mNameString);
  }

  return true;
}

GLint
ShaderProgramOGL::CreateShader(GLenum aShaderType, const char *aShaderSource)
{
  GLint success, len = 0;

  GLint sh = mGL->fCreateShader(aShaderType);
  mGL->fShaderSource(sh, 1, (const GLchar**)&aShaderSource, nullptr);
  mGL->fCompileShader(sh);
  mGL->fGetShaderiv(sh, LOCAL_GL_COMPILE_STATUS, &success);
  mGL->fGetShaderiv(sh, LOCAL_GL_INFO_LOG_LENGTH, (GLint*) &len);
  /* Even if compiling is successful, there may still be warnings.  Print them
   * in a debug build.  The > 10 is to catch silly compilers that might put
   * some whitespace in the log but otherwise leave it empty.
   */
  if (!success
#ifdef DEBUG
      || (len > 10 && gfxEnv::DebugShaders())
#endif
      )
  {
    nsAutoCString log;
    log.SetCapacity(len);
    mGL->fGetShaderInfoLog(sh, len, (GLint*) &len, (char*) log.BeginWriting());
    log.SetLength(len);

    if (!success) {
      printf_stderr("=== SHADER COMPILATION FAILED ===\n");
    } else {
      printf_stderr("=== SHADER COMPILATION WARNINGS ===\n");
    }

      printf_stderr("=== Source:\n%s\n", aShaderSource);
      printf_stderr("=== Log:\n%s\n", log.get());
      printf_stderr("============\n");

    if (!success) {
      mGL->fDeleteShader(sh);
      return 0;
    }
  }

  return sh;
}

bool
ShaderProgramOGL::CreateProgram(const char *aVertexShaderString,
                                const char *aFragmentShaderString)
{
  GLuint vertexShader = CreateShader(LOCAL_GL_VERTEX_SHADER, aVertexShaderString);
  GLuint fragmentShader = CreateShader(LOCAL_GL_FRAGMENT_SHADER, aFragmentShaderString);

  if (!vertexShader || !fragmentShader)
    return false;

  GLint result = mGL->fCreateProgram();
  mGL->fAttachShader(result, vertexShader);
  mGL->fAttachShader(result, fragmentShader);

  for (Pair<nsCString, GLuint>& attribute : mProfile.mAttributes) {
    mGL->fBindAttribLocation(result, attribute.second(),
                             attribute.first().get());
  }

  mGL->fLinkProgram(result);

  GLint success, len;
  mGL->fGetProgramiv(result, LOCAL_GL_LINK_STATUS, &success);
  mGL->fGetProgramiv(result, LOCAL_GL_INFO_LOG_LENGTH, (GLint*) &len);
  /* Even if linking is successful, there may still be warnings.  Print them
   * in a debug build.  The > 10 is to catch silly compilers that might put
   * some whitespace in the log but otherwise leave it empty.
   */
  if (!success
#ifdef DEBUG
      || (len > 10 && gfxEnv::DebugShaders())
#endif
      )
  {
    nsAutoCString log;
    log.SetCapacity(len);
    mGL->fGetProgramInfoLog(result, len, (GLint*) &len, (char*) log.BeginWriting());
    log.SetLength(len);

    if (!success) {
      printf_stderr("=== PROGRAM LINKING FAILED ===\n");
    } else {
      printf_stderr("=== PROGRAM LINKING WARNINGS ===\n");
    }
    printf_stderr("=== Log:\n%s\n", log.get());
    printf_stderr("============\n");
  }

  // We can mark the shaders for deletion; they're attached to the program
  // and will remain attached.
  mGL->fDeleteShader(vertexShader);
  mGL->fDeleteShader(fragmentShader);

  if (!success) {
    mGL->fDeleteProgram(result);
    return false;
  }

  mProgram = result;
  return true;
}

GLuint
ShaderProgramOGL::GetProgram()
{
  if (mProgramState == STATE_NEW) {
    if (!Initialize()) {
      NS_WARNING("Shader could not be initialised");
    }
  }
  MOZ_ASSERT(HasInitialized(), "Attempting to get a program that's not been initialized!");
  return mProgram;
}

void
ShaderProgramOGL::SetBlurRadius(float aRX, float aRY)
{
  float f[] = {aRX, aRY};
  SetUniform(KnownUniform::BlurRadius, 2, f);

  float gaussianKernel[GAUSSIAN_KERNEL_HALF_WIDTH];
  float sum = 0.0f;
  for (int i = 0; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) {
    float x = i * GAUSSIAN_KERNEL_STEP;
    float sigma = 1.0f;
    gaussianKernel[i] = exp(-x * x / (2 * sigma * sigma)) / sqrt(2 * M_PI * sigma * sigma);
    sum += gaussianKernel[i] * (i == 0 ? 1 : 2);
  }
  for (int i = 0; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) {
    gaussianKernel[i] /= sum;
  }
  SetArrayUniform(KnownUniform::BlurGaussianKernel, GAUSSIAN_KERNEL_HALF_WIDTH, gaussianKernel);
}

void
ShaderProgramOGL::SetYUVColorSpace(YUVColorSpace aYUVColorSpace)
{
  const float* yuvToRgb = gfxUtils::YuvToRgbMatrix3x3ColumnMajor(aYUVColorSpace);
  SetMatrix3fvUniform(KnownUniform::YuvColorMatrix, yuvToRgb);
}

} // namespace layers
} // namespace mozilla