DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d38398e5144e)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
$$ -*- mode: c++; -*-
$$ This is a Pump source file.  Please use Pump to convert it to
$$ gmock-generated-actions.h.
$$
$var n = 10  $$ The maximum arity we support.
$$ }} This line fixes auto-indentation of the following code in Emacs.
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used variadic matchers.

#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_

#include <sstream>
#include <string>
#include <vector>
#include "gmock/gmock-matchers.h"

namespace testing {
namespace internal {

$range i 0..n-1

// The type of the i-th (0-based) field of Tuple.
#define GMOCK_FIELD_TYPE_(Tuple, i) \
    typename ::std::tr1::tuple_element<i, Tuple>::type

// TupleFields<Tuple, k0, ..., kn> is for selecting fields from a
// tuple of type Tuple.  It has two members:
//
//   type: a tuple type whose i-th field is the ki-th field of Tuple.
//   GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple.
//
// For example, in class TupleFields<tuple<bool, char, int>, 2, 0>, we have:
//
//   type is tuple<int, bool>, and
//   GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true).

template <class Tuple$for i [[, int k$i = -1]]>
class TupleFields;

// This generic version is used when there are $n selectors.
template <class Tuple$for i [[, int k$i]]>
class TupleFields {
 public:
  typedef ::std::tr1::tuple<$for i, [[GMOCK_FIELD_TYPE_(Tuple, k$i)]]> type;
  static type GetSelectedFields(const Tuple& t) {
    using ::std::tr1::get;
    return type($for i, [[get<k$i>(t)]]);
  }
};

// The following specialization is used for 0 ~ $(n-1) selectors.

$for i [[
$$ }}}
$range j 0..i-1
$range k 0..n-1

template <class Tuple$for j [[, int k$j]]>
class TupleFields<Tuple, $for k, [[$if k < i [[k$k]] $else [[-1]]]]> {
 public:
  typedef ::std::tr1::tuple<$for j, [[GMOCK_FIELD_TYPE_(Tuple, k$j)]]> type;
  static type GetSelectedFields(const Tuple& $if i==0 [[/* t */]] $else [[t]]) {
    using ::std::tr1::get;
    return type($for j, [[get<k$j>(t)]]);
  }
};

]]

#undef GMOCK_FIELD_TYPE_

// Implements the Args() matcher.

$var ks = [[$for i, [[k$i]]]]
template <class ArgsTuple$for i [[, int k$i = -1]]>
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
 public:
  // ArgsTuple may have top-level const or reference modifiers.
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(ArgsTuple) RawArgsTuple;
  typedef typename internal::TupleFields<RawArgsTuple, $ks>::type SelectedArgs;
  typedef Matcher<const SelectedArgs&> MonomorphicInnerMatcher;

  template <typename InnerMatcher>
  explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
      : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}

  virtual bool MatchAndExplain(ArgsTuple args,
                               MatchResultListener* listener) const {
    const SelectedArgs& selected_args = GetSelectedArgs(args);
    if (!listener->IsInterested())
      return inner_matcher_.Matches(selected_args);

    PrintIndices(listener->stream());
    *listener << "are " << PrintToString(selected_args);

    StringMatchResultListener inner_listener;
    const bool match = inner_matcher_.MatchAndExplain(selected_args,
                                                      &inner_listener);
    PrintIfNotEmpty(inner_listener.str(), listener->stream());
    return match;
  }

  virtual void DescribeTo(::std::ostream* os) const {
    *os << "are a tuple ";
    PrintIndices(os);
    inner_matcher_.DescribeTo(os);
  }

  virtual void DescribeNegationTo(::std::ostream* os) const {
    *os << "are a tuple ";
    PrintIndices(os);
    inner_matcher_.DescribeNegationTo(os);
  }

 private:
  static SelectedArgs GetSelectedArgs(ArgsTuple args) {
    return TupleFields<RawArgsTuple, $ks>::GetSelectedFields(args);
  }

  // Prints the indices of the selected fields.
  static void PrintIndices(::std::ostream* os) {
    *os << "whose fields (";
    const int indices[$n] = { $ks };
    for (int i = 0; i < $n; i++) {
      if (indices[i] < 0)
        break;

      if (i >= 1)
        *os << ", ";

      *os << "#" << indices[i];
    }
    *os << ") ";
  }

  const MonomorphicInnerMatcher inner_matcher_;

  GTEST_DISALLOW_ASSIGN_(ArgsMatcherImpl);
};

template <class InnerMatcher$for i [[, int k$i = -1]]>
class ArgsMatcher {
 public:
  explicit ArgsMatcher(const InnerMatcher& inner_matcher)
      : inner_matcher_(inner_matcher) {}

  template <typename ArgsTuple>
  operator Matcher<ArgsTuple>() const {
    return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, $ks>(inner_matcher_));
  }

 private:
  const InnerMatcher inner_matcher_;

  GTEST_DISALLOW_ASSIGN_(ArgsMatcher);
};

// Implements ElementsAre() of 1-$n arguments.


$range i 1..n
$for i [[
$range j 1..i
template <$for j, [[typename T$j]]>
class ElementsAreMatcher$i {
 public:
  $if i==1 [[explicit ]]ElementsAreMatcher$i($for j, [[const T$j& e$j]])$if i > 0 [[ : ]]
      $for j, [[e$j[[]]_(e$j)]] {}

  template <typename Container>
  operator Matcher<Container>() const {
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
    typedef typename internal::StlContainerView<RawContainer>::type::value_type
        Element;

$if i==1 [[

    // Nokia's Symbian Compiler has a nasty bug where the object put
    // in a one-element local array is not destructed when the array
    // goes out of scope.  This leads to obvious badness as we've
    // added the linked_ptr in it to our other linked_ptrs list.
    // Hence we implement ElementsAreMatcher1 specially to avoid using
    // a local array.
    const Matcher<const Element&> matcher =
        MatcherCast<const Element&>(e1_);
    return MakeMatcher(new ElementsAreMatcherImpl<Container>(&matcher, 1));
]] $else [[

    const Matcher<const Element&> matchers[] = {

$for j [[
      MatcherCast<const Element&>(e$j[[]]_),

]]
    };

    return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, $i));
]]

  }

 private:

$for j [[
  const T$j& e$j[[]]_;

]]

  GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher$i);
};


]]
}  // namespace internal

// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
// fields of it matches a_matcher.  C++ doesn't support default
// arguments for function templates, so we have to overload it.

$range i 0..n
$for i [[
$range j 1..i
template <$for j [[int k$j, ]]typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher$for j [[, k$j]]>
Args(const InnerMatcher& matcher) {
  return internal::ArgsMatcher<InnerMatcher$for j [[, k$j]]>(matcher);
}


]]
// ElementsAre(e0, e1, ..., e_n) matches an STL-style container with
// (n + 1) elements, where the i-th element in the container must
// match the i-th argument in the list.  Each argument of
// ElementsAre() can be either a value or a matcher.  We support up to
// $n arguments.
//
// NOTE: Since ElementsAre() cares about the order of the elements, it
// must not be used with containers whose elements's order is
// undefined (e.g. hash_map).

inline internal::ElementsAreMatcher0 ElementsAre() {
  return internal::ElementsAreMatcher0();
}

$range i 1..n
$for i [[
$range j 1..i

template <$for j, [[typename T$j]]>
inline internal::ElementsAreMatcher$i<$for j, [[T$j]]> ElementsAre($for j, [[const T$j& e$j]]) {
  return internal::ElementsAreMatcher$i<$for j, [[T$j]]>($for j, [[e$j]]);
}

]]

// ElementsAreArray(array) and ElementAreArray(array, count) are like
// ElementsAre(), except that they take an array of values or
// matchers.  The former form infers the size of 'array', which must
// be a static C-style array.  In the latter form, 'array' can either
// be a static array or a pointer to a dynamically created array.

template <typename T>
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
    const T* first, size_t count) {
  return internal::ElementsAreArrayMatcher<T>(first, count);
}

template <typename T, size_t N>
inline internal::ElementsAreArrayMatcher<T>
ElementsAreArray(const T (&array)[N]) {
  return internal::ElementsAreArrayMatcher<T>(array, N);
}

// AllOf(m1, m2, ..., mk) matches any value that matches all of the given
// sub-matchers.  AllOf is called fully qualified to prevent ADL from firing.

$range i 2..n
$for i [[
$range j 1..i
$range k 1..i-1

template <$for j, [[typename Matcher$j]]>
inline $for k[[internal::BothOfMatcher<Matcher$k, ]]Matcher$i[[]]$for k [[> ]]

AllOf($for j, [[Matcher$j m$j]]) {

$if i == 2 [[
  return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2);
]] $else [[
  return ::testing::AllOf(m1, ::testing::AllOf($for k, [[m$(k + 1)]]));
]]

}

]]

// AnyOf(m1, m2, ..., mk) matches any value that matches any of the given
// sub-matchers.  AnyOf is called fully qualified to prevent ADL from firing.

$range i 2..n
$for i [[
$range j 1..i
$range k 1..i-1

template <$for j, [[typename Matcher$j]]>
inline $for k[[internal::EitherOfMatcher<Matcher$k, ]]Matcher$i[[]]$for k [[> ]]

AnyOf($for j, [[Matcher$j m$j]]) {

$if i == 2 [[
  return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2);
]] $else [[
  return ::testing::AnyOf(m1, ::testing::AnyOf($for k, [[m$(k + 1)]]));
]]

}

]]

}  // namespace testing
$$ } // This Pump meta comment fixes auto-indentation in Emacs. It will not
$$   // show up in the generated code.


// The MATCHER* family of macros can be used in a namespace scope to
// define custom matchers easily.
//
// Basic Usage
// ===========
//
// The syntax
//
//   MATCHER(name, description_string) { statements; }
//
// defines a matcher with the given name that executes the statements,
// which must return a bool to indicate if the match succeeds.  Inside
// the statements, you can refer to the value being matched by 'arg',
// and refer to its type by 'arg_type'.
//
// The description string documents what the matcher does, and is used
// to generate the failure message when the match fails.  Since a
// MATCHER() is usually defined in a header file shared by multiple
// C++ source files, we require the description to be a C-string
// literal to avoid possible side effects.  It can be empty, in which
// case we'll use the sequence of words in the matcher name as the
// description.
//
// For example:
//
//   MATCHER(IsEven, "") { return (arg % 2) == 0; }
//
// allows you to write
//
//   // Expects mock_foo.Bar(n) to be called where n is even.
//   EXPECT_CALL(mock_foo, Bar(IsEven()));
//
// or,
//
//   // Verifies that the value of some_expression is even.
//   EXPECT_THAT(some_expression, IsEven());
//
// If the above assertion fails, it will print something like:
//
//   Value of: some_expression
//   Expected: is even
//     Actual: 7
//
// where the description "is even" is automatically calculated from the
// matcher name IsEven.
//
// Argument Type
// =============
//
// Note that the type of the value being matched (arg_type) is
// determined by the context in which you use the matcher and is
// supplied to you by the compiler, so you don't need to worry about
// declaring it (nor can you).  This allows the matcher to be
// polymorphic.  For example, IsEven() can be used to match any type
// where the value of "(arg % 2) == 0" can be implicitly converted to
// a bool.  In the "Bar(IsEven())" example above, if method Bar()
// takes an int, 'arg_type' will be int; if it takes an unsigned long,
// 'arg_type' will be unsigned long; and so on.
//
// Parameterizing Matchers
// =======================
//
// Sometimes you'll want to parameterize the matcher.  For that you
// can use another macro:
//
//   MATCHER_P(name, param_name, description_string) { statements; }
//
// For example:
//
//   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
//
// will allow you to write:
//
//   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
//
// which may lead to this message (assuming n is 10):
//
//   Value of: Blah("a")
//   Expected: has absolute value 10
//     Actual: -9
//
// Note that both the matcher description and its parameter are
// printed, making the message human-friendly.
//
// In the matcher definition body, you can write 'foo_type' to
// reference the type of a parameter named 'foo'.  For example, in the
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
// 'value_type' to refer to the type of 'value'.
//
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
// support multi-parameter matchers.
//
// Describing Parameterized Matchers
// =================================
//
// The last argument to MATCHER*() is a string-typed expression.  The
// expression can reference all of the matcher's parameters and a
// special bool-typed variable named 'negation'.  When 'negation' is
// false, the expression should evaluate to the matcher's description;
// otherwise it should evaluate to the description of the negation of
// the matcher.  For example,
//
//   using testing::PrintToString;
//
//   MATCHER_P2(InClosedRange, low, hi,
//       string(negation ? "is not" : "is") + " in range [" +
//       PrintToString(low) + ", " + PrintToString(hi) + "]") {
//     return low <= arg && arg <= hi;
//   }
//   ...
//   EXPECT_THAT(3, InClosedRange(4, 6));
//   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
//
// would generate two failures that contain the text:
//
//   Expected: is in range [4, 6]
//   ...
//   Expected: is not in range [2, 4]
//
// If you specify "" as the description, the failure message will
// contain the sequence of words in the matcher name followed by the
// parameter values printed as a tuple.  For example,
//
//   MATCHER_P2(InClosedRange, low, hi, "") { ... }
//   ...
//   EXPECT_THAT(3, InClosedRange(4, 6));
//   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
//
// would generate two failures that contain the text:
//
//   Expected: in closed range (4, 6)
//   ...
//   Expected: not (in closed range (2, 4))
//
// Types of Matcher Parameters
// ===========================
//
// For the purpose of typing, you can view
//
//   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
//
// as shorthand for
//
//   template <typename p1_type, ..., typename pk_type>
//   FooMatcherPk<p1_type, ..., pk_type>
//   Foo(p1_type p1, ..., pk_type pk) { ... }
//
// When you write Foo(v1, ..., vk), the compiler infers the types of
// the parameters v1, ..., and vk for you.  If you are not happy with
// the result of the type inference, you can specify the types by
// explicitly instantiating the template, as in Foo<long, bool>(5,
// false).  As said earlier, you don't get to (or need to) specify
// 'arg_type' as that's determined by the context in which the matcher
// is used.  You can assign the result of expression Foo(p1, ..., pk)
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
// can be useful when composing matchers.
//
// While you can instantiate a matcher template with reference types,
// passing the parameters by pointer usually makes your code more
// readable.  If, however, you still want to pass a parameter by
// reference, be aware that in the failure message generated by the
// matcher you will see the value of the referenced object but not its
// address.
//
// Explaining Match Results
// ========================
//
// Sometimes the matcher description alone isn't enough to explain why
// the match has failed or succeeded.  For example, when expecting a
// long string, it can be very helpful to also print the diff between
// the expected string and the actual one.  To achieve that, you can
// optionally stream additional information to a special variable
// named result_listener, whose type is a pointer to class
// MatchResultListener:
//
//   MATCHER_P(EqualsLongString, str, "") {
//     if (arg == str) return true;
//
//     *result_listener << "the difference: "
///                     << DiffStrings(str, arg);
//     return false;
//   }
//
// Overloading Matchers
// ====================
//
// You can overload matchers with different numbers of parameters:
//
//   MATCHER_P(Blah, a, description_string1) { ... }
//   MATCHER_P2(Blah, a, b, description_string2) { ... }
//
// Caveats
// =======
//
// When defining a new matcher, you should also consider implementing
// MatcherInterface or using MakePolymorphicMatcher().  These
// approaches require more work than the MATCHER* macros, but also
// give you more control on the types of the value being matched and
// the matcher parameters, which may leads to better compiler error
// messages when the matcher is used wrong.  They also allow
// overloading matchers based on parameter types (as opposed to just
// based on the number of parameters).
//
// MATCHER*() can only be used in a namespace scope.  The reason is
// that C++ doesn't yet allow function-local types to be used to
// instantiate templates.  The up-coming C++0x standard will fix this.
// Once that's done, we'll consider supporting using MATCHER*() inside
// a function.
//
// More Information
// ================
//
// To learn more about using these macros, please search for 'MATCHER'
// on http://code.google.com/p/googlemock/wiki/CookBook.

$range i 0..n
$for i

[[
$var macro_name = [[$if i==0 [[MATCHER]] $elif i==1 [[MATCHER_P]]
                                         $else [[MATCHER_P$i]]]]
$var class_name = [[name##Matcher[[$if i==0 [[]] $elif i==1 [[P]]
                                                 $else [[P$i]]]]]]
$range j 0..i-1
$var template = [[$if i==0 [[]] $else [[

  template <$for j, [[typename p$j##_type]]>\
]]]]
$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
$var impl_ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
$var impl_inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
$var params = [[$for j, [[p$j]]]]
$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]]
$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]]
$var param_field_decls = [[$for j
[[

      p$j##_type p$j;\
]]]]
$var param_field_decls2 = [[$for j
[[

    p$j##_type p$j;\
]]]]

#define $macro_name(name$for j [[, p$j]], description)\$template
  class $class_name {\
   public:\
    template <typename arg_type>\
    class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
     public:\
      [[$if i==1 [[explicit ]]]]gmock_Impl($impl_ctor_param_list)\
          $impl_inits {}\
      virtual bool MatchAndExplain(\
          arg_type arg, ::testing::MatchResultListener* result_listener) const;\
      virtual void DescribeTo(::std::ostream* gmock_os) const {\
        *gmock_os << FormatDescription(false);\
      }\
      virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
        *gmock_os << FormatDescription(true);\
      }\$param_field_decls
     private:\
      ::testing::internal::string FormatDescription(bool negation) const {\
        const ::testing::internal::string gmock_description = (description);\
        if (!gmock_description.empty())\
          return gmock_description;\
        return ::testing::internal::FormatMatcherDescription(\
            negation, #name,\
            ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
                ::std::tr1::tuple<$for j, [[p$j##_type]]>($for j, [[p$j]])));\
      }\
      GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
    };\
    template <typename arg_type>\
    operator ::testing::Matcher<arg_type>() const {\
      return ::testing::Matcher<arg_type>(\
          new gmock_Impl<arg_type>($params));\
    }\
    $class_name($ctor_param_list)$inits {\
    }\$param_field_decls2
   private:\
    GTEST_DISALLOW_ASSIGN_($class_name);\
  };\$template
  inline $class_name$param_types name($param_types_and_names) {\
    return $class_name$param_types($params);\
  }\$template
  template <typename arg_type>\
  bool $class_name$param_types::gmock_Impl<arg_type>::MatchAndExplain(\
      arg_type arg,\
      ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
          const
]]


#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_