DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Mercurial (d38398e5144e)

VCS Links

ieee_double_shape_type

ieee_float_shape_type

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

/*
 * from: @(#)fdlibm.h 5.1 93/09/24
 * $FreeBSD$
 */

#ifndef _MATH_PRIVATE_H_
#define	_MATH_PRIVATE_H_

#include <cfloat>
#include <stdint.h>
#include <sys/types.h>

#include "fdlibm.h"

#include "mozilla/EndianUtils.h"

/*
 * The original fdlibm code used statements like:
 *	n0 = ((*(int*)&one)>>29)^1;		* index of high word *
 *	ix0 = *(n0+(int*)&x);			* high word of x *
 *	ix1 = *((1-n0)+(int*)&x);		* low word of x *
 * to dig two 32 bit words out of the 64 bit IEEE floating point
 * value.  That is non-ANSI, and, moreover, the gcc instruction
 * scheduler gets it wrong.  We instead use the following macros.
 * Unlike the original code, we determine the endianness at compile
 * time, not at run time; I don't see much benefit to selecting
 * endianness at run time.
 */

#ifdef WIN32
#define u_int32_t uint32_t
#define u_int64_t uint64_t
#endif

/*
 * A union which permits us to convert between a double and two 32 bit
 * ints.
 */

#if MOZ_BIG_ENDIAN

typedef union
{
  double value;
  struct
  {
    u_int32_t msw;
    u_int32_t lsw;
  } parts;
  struct
  {
    u_int64_t w;
  } xparts;
} ieee_double_shape_type;

#endif

#if MOZ_LITTLE_ENDIAN

typedef union
{
  double value;
  struct
  {
    u_int32_t lsw;
    u_int32_t msw;
  } parts;
  struct
  {
    u_int64_t w;
  } xparts;
} ieee_double_shape_type;

#endif

/* Get two 32 bit ints from a double.  */

#define EXTRACT_WORDS(ix0,ix1,d)				\
do {								\
  ieee_double_shape_type ew_u;					\
  ew_u.value = (d);						\
  (ix0) = ew_u.parts.msw;					\
  (ix1) = ew_u.parts.lsw;					\
} while (0)

/* Get a 64-bit int from a double. */
#define EXTRACT_WORD64(ix,d)					\
do {								\
  ieee_double_shape_type ew_u;					\
  ew_u.value = (d);						\
  (ix) = ew_u.xparts.w;						\
} while (0)

/* Get the more significant 32 bit int from a double.  */

#define GET_HIGH_WORD(i,d)					\
do {								\
  ieee_double_shape_type gh_u;					\
  gh_u.value = (d);						\
  (i) = gh_u.parts.msw;						\
} while (0)

/* Get the less significant 32 bit int from a double.  */

#define GET_LOW_WORD(i,d)					\
do {								\
  ieee_double_shape_type gl_u;					\
  gl_u.value = (d);						\
  (i) = gl_u.parts.lsw;						\
} while (0)

/* Set a double from two 32 bit ints.  */

#define INSERT_WORDS(d,ix0,ix1)					\
do {								\
  ieee_double_shape_type iw_u;					\
  iw_u.parts.msw = (ix0);					\
  iw_u.parts.lsw = (ix1);					\
  (d) = iw_u.value;						\
} while (0)

/* Set a double from a 64-bit int. */
#define INSERT_WORD64(d,ix)					\
do {								\
  ieee_double_shape_type iw_u;					\
  iw_u.xparts.w = (ix);						\
  (d) = iw_u.value;						\
} while (0)

/* Set the more significant 32 bits of a double from an int.  */

#define SET_HIGH_WORD(d,v)					\
do {								\
  ieee_double_shape_type sh_u;					\
  sh_u.value = (d);						\
  sh_u.parts.msw = (v);						\
  (d) = sh_u.value;						\
} while (0)

/* Set the less significant 32 bits of a double from an int.  */

#define SET_LOW_WORD(d,v)					\
do {								\
  ieee_double_shape_type sl_u;					\
  sl_u.value = (d);						\
  sl_u.parts.lsw = (v);						\
  (d) = sl_u.value;						\
} while (0)

/*
 * A union which permits us to convert between a float and a 32 bit
 * int.
 */

typedef union
{
  float value;
  /* FIXME: Assumes 32 bit int.  */
  unsigned int word;
} ieee_float_shape_type;

/* Get a 32 bit int from a float.  */

#define GET_FLOAT_WORD(i,d)					\
do {								\
  ieee_float_shape_type gf_u;					\
  gf_u.value = (d);						\
  (i) = gf_u.word;						\
} while (0)

/* Set a float from a 32 bit int.  */

#define SET_FLOAT_WORD(d,i)					\
do {								\
  ieee_float_shape_type sf_u;					\
  sf_u.word = (i);						\
  (d) = sf_u.value;						\
} while (0)

/*
 * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
 * double.
 */

#define	EXTRACT_LDBL80_WORDS(ix0,ix1,d)				\
do {								\
  union IEEEl2bits ew_u;					\
  ew_u.e = (d);							\
  (ix0) = ew_u.xbits.expsign;					\
  (ix1) = ew_u.xbits.man;					\
} while (0)

/*
 * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
 * long double.
 */

#define	EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d)			\
do {								\
  union IEEEl2bits ew_u;					\
  ew_u.e = (d);							\
  (ix0) = ew_u.xbits.expsign;					\
  (ix1) = ew_u.xbits.manh;					\
  (ix2) = ew_u.xbits.manl;					\
} while (0)

/* Get expsign as a 16 bit int from a long double.  */

#define	GET_LDBL_EXPSIGN(i,d)					\
do {								\
  union IEEEl2bits ge_u;					\
  ge_u.e = (d);							\
  (i) = ge_u.xbits.expsign;					\
} while (0)

/*
 * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
 * mantissa.
 */

#define	INSERT_LDBL80_WORDS(d,ix0,ix1)				\
do {								\
  union IEEEl2bits iw_u;					\
  iw_u.xbits.expsign = (ix0);					\
  iw_u.xbits.man = (ix1);					\
  (d) = iw_u.e;							\
} while (0)

/*
 * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
 * comprising the mantissa.
 */

#define	INSERT_LDBL128_WORDS(d,ix0,ix1,ix2)			\
do {								\
  union IEEEl2bits iw_u;					\
  iw_u.xbits.expsign = (ix0);					\
  iw_u.xbits.manh = (ix1);					\
  iw_u.xbits.manl = (ix2);					\
  (d) = iw_u.e;							\
} while (0)

/* Set expsign of a long double from a 16 bit int.  */

#define	SET_LDBL_EXPSIGN(d,v)					\
do {								\
  union IEEEl2bits se_u;					\
  se_u.e = (d);							\
  se_u.xbits.expsign = (v);					\
  (d) = se_u.e;							\
} while (0)

#ifdef __i386__
/* Long double constants are broken on i386. */
#define	LD80C(m, ex, v) {						\
	.xbits.man = __CONCAT(m, ULL),					\
	.xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0),	\
}
#else
/* The above works on non-i386 too, but we use this to check v. */
#define	LD80C(m, ex, v)	{ .e = (v), }
#endif

#ifdef FLT_EVAL_METHOD
/*
 * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
 */
#if !defined(_MSC_VER) && (FLT_EVAL_METHOD == 0 || __GNUC__ == 0)
#define	STRICT_ASSIGN(type, lval, rval)	((lval) = (rval))
#else
#define	STRICT_ASSIGN(type, lval, rval) do {	\
	volatile type __lval;			\
						\
	if (sizeof(type) >= sizeof(long double))	\
		(lval) = (rval);		\
	else {					\
		__lval = (rval);		\
		(lval) = __lval;		\
	}					\
} while (0)
#endif
#else
#define	STRICT_ASSIGN(type, lval, rval) do {	\
	volatile type __lval;			\
						\
	if (sizeof(type) >= sizeof(long double))	\
		(lval) = (rval);		\
	else {					\
		__lval = (rval);		\
		(lval) = __lval;		\
	}					\
} while (0)
#endif /* FLT_EVAL_METHOD */

/* Support switching the mode to FP_PE if necessary. */
#if defined(__i386__) && !defined(NO_FPSETPREC)
#define	ENTERI()				\
	long double __retval;			\
	fp_prec_t __oprec;			\
						\
	if ((__oprec = fpgetprec()) != FP_PE)	\
		fpsetprec(FP_PE)
#define	RETURNI(x) do {				\
	__retval = (x);				\
	if (__oprec != FP_PE)			\
		fpsetprec(__oprec);		\
	RETURNF(__retval);			\
} while (0)
#else
#define	ENTERI(x)
#define	RETURNI(x)	RETURNF(x)
#endif

/* Default return statement if hack*_t() is not used. */
#define      RETURNF(v)      return (v)

/*
 * 2sum gives the same result as 2sumF without requiring |a| >= |b| or
 * a == 0, but is slower.
 */
#define	_2sum(a, b) do {	\
	__typeof(a) __s, __w;	\
				\
	__w = (a) + (b);	\
	__s = __w - (a);	\
	(b) = ((a) - (__w - __s)) + ((b) - __s); \
	(a) = __w;		\
} while (0)

/*
 * 2sumF algorithm.
 *
 * "Normalize" the terms in the infinite-precision expression a + b for
 * the sum of 2 floating point values so that b is as small as possible
 * relative to 'a'.  (The resulting 'a' is the value of the expression in
 * the same precision as 'a' and the resulting b is the rounding error.)
 * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
 * exponent overflow or underflow must not occur.  This uses a Theorem of
 * Dekker (1971).  See Knuth (1981) 4.2.2 Theorem C.  The name "TwoSum"
 * is apparently due to Skewchuk (1997).
 *
 * For this to always work, assignment of a + b to 'a' must not retain any
 * extra precision in a + b.  This is required by C standards but broken
 * in many compilers.  The brokenness cannot be worked around using
 * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
 * algorithm would be destroyed by non-null strict assignments.  (The
 * compilers are correct to be broken -- the efficiency of all floating
 * point code calculations would be destroyed similarly if they forced the
 * conversions.)
 *
 * Fortunately, a case that works well can usually be arranged by building
 * any extra precision into the type of 'a' -- 'a' should have type float_t,
 * double_t or long double.  b's type should be no larger than 'a's type.
 * Callers should use these types with scopes as large as possible, to
 * reduce their own extra-precision and efficiciency problems.  In
 * particular, they shouldn't convert back and forth just to call here.
 */
#ifdef DEBUG
#define	_2sumF(a, b) do {				\
	__typeof(a) __w;				\
	volatile __typeof(a) __ia, __ib, __r, __vw;	\
							\
	__ia = (a);					\
	__ib = (b);					\
	assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib));	\
							\
	__w = (a) + (b);				\
	(b) = ((a) - __w) + (b);			\
	(a) = __w;					\
							\
	/* The next 2 assertions are weak if (a) is already long double. */ \
	assert((long double)__ia + __ib == (long double)(a) + (b));	\
	__vw = __ia + __ib;				\
	__r = __ia - __vw;				\
	__r += __ib;					\
	assert(__vw == (a) && __r == (b));		\
} while (0)
#else /* !DEBUG */
#define	_2sumF(a, b) do {	\
	__typeof(a) __w;	\
				\
	__w = (a) + (b);	\
	(b) = ((a) - __w) + (b); \
	(a) = __w;		\
} while (0)
#endif /* DEBUG */

/*
 * Set x += c, where x is represented in extra precision as a + b.
 * x must be sufficiently normalized and sufficiently larger than c,
 * and the result is then sufficiently normalized.
 *
 * The details of ordering are that |a| must be >= |c| (so that (a, c)
 * can be normalized without extra work to swap 'a' with c).  The details of
 * the normalization are that b must be small relative to the normalized 'a'.
 * Normalization of (a, c) makes the normalized c tiny relative to the
 * normalized a, so b remains small relative to 'a' in the result.  However,
 * b need not ever be tiny relative to 'a'.  For example, b might be about
 * 2**20 times smaller than 'a' to give about 20 extra bits of precision.
 * That is usually enough, and adding c (which by normalization is about
 * 2**53 times smaller than a) cannot change b significantly.  However,
 * cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
 * significantly relative to b.  The caller must ensure that significant
 * cancellation doesn't occur, either by having c of the same sign as 'a',
 * or by having |c| a few percent smaller than |a|.  Pre-normalization of
 * (a, b) may help.
 *
 * This is is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
 * exercise 19).  We gain considerable efficiency by requiring the terms to
 * be sufficiently normalized and sufficiently increasing.
 */
#define	_3sumF(a, b, c) do {	\
	__typeof(a) __tmp;	\
				\
	__tmp = (c);		\
	_2sumF(__tmp, (a));	\
	(b) += (a);		\
	(a) = __tmp;		\
} while (0)

/*
 * Common routine to process the arguments to nan(), nanf(), and nanl().
 */
void _scan_nan(uint32_t *__words, int __num_words, const char *__s);

#ifdef _COMPLEX_H

/*
 * C99 specifies that complex numbers have the same representation as
 * an array of two elements, where the first element is the real part
 * and the second element is the imaginary part.
 */
typedef union {
	float complex f;
	float a[2];
} float_complex;
typedef union {
	double complex f;
	double a[2];
} double_complex;
typedef union {
	long double complex f;
	long double a[2];
} long_double_complex;
#define	REALPART(z)	((z).a[0])
#define	IMAGPART(z)	((z).a[1])

/*
 * Inline functions that can be used to construct complex values.
 *
 * The C99 standard intends x+I*y to be used for this, but x+I*y is
 * currently unusable in general since gcc introduces many overflow,
 * underflow, sign and efficiency bugs by rewriting I*y as
 * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
 * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
 * to -0.0+I*0.0.
 *
 * The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL()
 * to construct complex values.  Compilers that conform to the C99
 * standard require the following functions to avoid the above issues.
 */

#ifndef CMPLXF
static __inline float complex
CMPLXF(float x, float y)
{
	float_complex z;

	REALPART(z) = x;
	IMAGPART(z) = y;
	return (z.f);
}
#endif

#ifndef CMPLX
static __inline double complex
CMPLX(double x, double y)
{
	double_complex z;

	REALPART(z) = x;
	IMAGPART(z) = y;
	return (z.f);
}
#endif

#ifndef CMPLXL
static __inline long double complex
CMPLXL(long double x, long double y)
{
	long_double_complex z;

	REALPART(z) = x;
	IMAGPART(z) = y;
	return (z.f);
}
#endif

#endif /* _COMPLEX_H */
 
#ifdef __GNUCLIKE_ASM

/* Asm versions of some functions. */

#ifdef __amd64__
static __inline int
irint(double x)
{
	int n;

	asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
	return (n);
}
#define	HAVE_EFFICIENT_IRINT
#endif

#ifdef __i386__
static __inline int
irint(double x)
{
	int n;

	asm("fistl %0" : "=m" (n) : "t" (x));
	return (n);
}
#define	HAVE_EFFICIENT_IRINT
#endif

#if defined(__amd64__) || defined(__i386__)
static __inline int
irintl(long double x)
{
	int n;

	asm("fistl %0" : "=m" (n) : "t" (x));
	return (n);
}
#define	HAVE_EFFICIENT_IRINTL
#endif

#endif /* __GNUCLIKE_ASM */

#ifdef DEBUG
#if defined(__amd64__) || defined(__i386__)
#define	breakpoint()	asm("int $3")
#else
#include <signal.h>

#define	breakpoint()	raise(SIGTRAP)
#endif
#endif

/* Write a pari script to test things externally. */
#ifdef DOPRINT
#include <stdio.h>

#ifndef DOPRINT_SWIZZLE
#define	DOPRINT_SWIZZLE		0
#endif

#ifdef DOPRINT_LD80

#define	DOPRINT_START(xp) do {						\
	uint64_t __lx;							\
	uint16_t __hx;							\
									\
	/* Hack to give more-problematic args. */			\
	EXTRACT_LDBL80_WORDS(__hx, __lx, *xp);				\
	__lx ^= DOPRINT_SWIZZLE;					\
	INSERT_LDBL80_WORDS(*xp, __hx, __lx);				\
	printf("x = %.21Lg; ", (long double)*xp);			\
} while (0)
#define	DOPRINT_END1(v)							\
	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
#define	DOPRINT_END2(hi, lo)						\
	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
	    (long double)(hi), (long double)(lo))

#elif defined(DOPRINT_D64)

#define	DOPRINT_START(xp) do {						\
	uint32_t __hx, __lx;						\
									\
	EXTRACT_WORDS(__hx, __lx, *xp);					\
	__lx ^= DOPRINT_SWIZZLE;					\
	INSERT_WORDS(*xp, __hx, __lx);					\
	printf("x = %.21Lg; ", (long double)*xp);			\
} while (0)
#define	DOPRINT_END1(v)							\
	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
#define	DOPRINT_END2(hi, lo)						\
	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
	    (long double)(hi), (long double)(lo))

#elif defined(DOPRINT_F32)

#define	DOPRINT_START(xp) do {						\
	uint32_t __hx;							\
									\
	GET_FLOAT_WORD(__hx, *xp);					\
	__hx ^= DOPRINT_SWIZZLE;					\
	SET_FLOAT_WORD(*xp, __hx);					\
	printf("x = %.21Lg; ", (long double)*xp);			\
} while (0)
#define	DOPRINT_END1(v)							\
	printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
#define	DOPRINT_END2(hi, lo)						\
	printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n",		\
	    (long double)(hi), (long double)(lo))

#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */

#ifndef DOPRINT_SWIZZLE_HIGH
#define	DOPRINT_SWIZZLE_HIGH	0
#endif

#define	DOPRINT_START(xp) do {						\
	uint64_t __lx, __llx;						\
	uint16_t __hx;							\
									\
	EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp);			\
	__llx ^= DOPRINT_SWIZZLE;					\
	__lx ^= DOPRINT_SWIZZLE_HIGH;					\
	INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx);			\
	printf("x = %.36Lg; ", (long double)*xp);					\
} while (0)
#define	DOPRINT_END1(v)							\
	printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
#define	DOPRINT_END2(hi, lo)						\
	printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n",		\
	    (long double)(hi), (long double)(lo))

#endif /* DOPRINT_LD80 */

#else /* !DOPRINT */
#define	DOPRINT_START(xp)
#define	DOPRINT_END1(v)
#define	DOPRINT_END2(hi, lo)
#endif /* DOPRINT */

#define	RETURNP(x) do {			\
	DOPRINT_END1(x);		\
	RETURNF(x);			\
} while (0)
#define	RETURNPI(x) do {		\
	DOPRINT_END1(x);		\
	RETURNI(x);			\
} while (0)
#define	RETURN2P(x, y) do {		\
	DOPRINT_END2((x), (y));		\
	RETURNF((x) + (y));		\
} while (0)
#define	RETURN2PI(x, y) do {		\
	DOPRINT_END2((x), (y));		\
	RETURNI((x) + (y));		\
} while (0)
#ifdef STRUCT_RETURN
#define	RETURNSP(rp) do {		\
	if (!(rp)->lo_set)		\
		RETURNP((rp)->hi);	\
	RETURN2P((rp)->hi, (rp)->lo);	\
} while (0)
#define	RETURNSPI(rp) do {		\
	if (!(rp)->lo_set)		\
		RETURNPI((rp)->hi);	\
	RETURN2PI((rp)->hi, (rp)->lo);	\
} while (0)
#endif
#define	SUM2P(x, y) ({			\
	const __typeof (x) __x = (x);	\
	const __typeof (y) __y = (y);	\
					\
	DOPRINT_END2(__x, __y);		\
	__x + __y;			\
})

/*
 * ieee style elementary functions
 *
 * We rename functions here to improve other sources' diffability
 * against fdlibm.
 */
#define	__ieee754_sqrt	sqrt
#define	__ieee754_acos	acos
#define	__ieee754_acosh	acosh
#define	__ieee754_log	log
#define	__ieee754_log2	log2
#define	__ieee754_atanh	atanh
#define	__ieee754_asin	asin
#define	__ieee754_atan2	atan2
#define	__ieee754_exp	exp
#define	__ieee754_cosh	cosh
#define	__ieee754_fmod	fmod
#define	__ieee754_pow	pow
#define	__ieee754_lgamma lgamma
#define	__ieee754_gamma	gamma
#define	__ieee754_lgamma_r lgamma_r
#define	__ieee754_gamma_r gamma_r
#define	__ieee754_log10	log10
#define	__ieee754_sinh	sinh
#define	__ieee754_hypot	hypot
#define	__ieee754_j0	j0
#define	__ieee754_j1	j1
#define	__ieee754_y0	y0
#define	__ieee754_y1	y1
#define	__ieee754_jn	jn
#define	__ieee754_yn	yn
#define	__ieee754_remainder remainder
#define	__ieee754_scalb	scalb
#define	__ieee754_sqrtf	sqrtf
#define	__ieee754_acosf	acosf
#define	__ieee754_acoshf acoshf
#define	__ieee754_logf	logf
#define	__ieee754_atanhf atanhf
#define	__ieee754_asinf	asinf
#define	__ieee754_atan2f atan2f
#define	__ieee754_expf	expf
#define	__ieee754_coshf	coshf
#define	__ieee754_fmodf	fmodf
#define	__ieee754_powf	powf
#define	__ieee754_lgammaf lgammaf
#define	__ieee754_gammaf gammaf
#define	__ieee754_lgammaf_r lgammaf_r
#define	__ieee754_gammaf_r gammaf_r
#define	__ieee754_log10f log10f
#define	__ieee754_log2f log2f
#define	__ieee754_sinhf	sinhf
#define	__ieee754_hypotf hypotf
#define	__ieee754_j0f	j0f
#define	__ieee754_j1f	j1f
#define	__ieee754_y0f	y0f
#define	__ieee754_y1f	y1f
#define	__ieee754_jnf	jnf
#define	__ieee754_ynf	ynf
#define	__ieee754_remainderf remainderf
#define	__ieee754_scalbf scalbf

#define acos fdlibm::acos
#define asin fdlibm::asin
#define atan fdlibm::atan
#define atan2 fdlibm::atan2
#define cosh fdlibm::cosh
#define sinh fdlibm::sinh
#define tanh fdlibm::tanh
#define exp fdlibm::exp
#define log fdlibm::log
#define log10 fdlibm::log10
#define pow fdlibm::pow
#define sqrt fdlibm::sqrt
#define ceil fdlibm::ceil
#define ceilf fdlibm::ceilf
#define fabs fdlibm::fabs
#define floor fdlibm::floor
#define acosh fdlibm::acosh
#define asinh fdlibm::asinh
#define atanh fdlibm::atanh
#define cbrt fdlibm::cbrt
#define expm1 fdlibm::expm1
#define hypot fdlibm::hypot
#define log1p fdlibm::log1p
#define log2 fdlibm::log2
#define scalb fdlibm::scalb
#define copysign fdlibm::copysign
#define scalbn fdlibm::scalbn
#define trunc fdlibm::trunc
#define truncf fdlibm::truncf
#define floorf fdlibm::floorf
#define nearbyint fdlibm::nearbyint
#define nearbyintf fdlibm::nearbyintf
#define rint fdlibm::rint
#define rintf fdlibm::rintf

/* fdlibm kernel function */
int	__kernel_rem_pio2(double*,double*,int,int,int);

/* double precision kernel functions */
#ifndef INLINE_REM_PIO2
int	__ieee754_rem_pio2(double,double*);
#endif
double	__kernel_sin(double,double,int);
double	__kernel_cos(double,double);
double	__kernel_tan(double,double,int);
double	__ldexp_exp(double,int);
#ifdef _COMPLEX_H
double complex __ldexp_cexp(double complex,int);
#endif

/* float precision kernel functions */
#ifndef INLINE_REM_PIO2F
int	__ieee754_rem_pio2f(float,double*);
#endif
#ifndef INLINE_KERNEL_SINDF
float	__kernel_sindf(double);
#endif
#ifndef INLINE_KERNEL_COSDF
float	__kernel_cosdf(double);
#endif
#ifndef INLINE_KERNEL_TANDF
float	__kernel_tandf(double,int);
#endif
float	__ldexp_expf(float,int);
#ifdef _COMPLEX_H
float complex __ldexp_cexpf(float complex,int);
#endif

/* long double precision kernel functions */
long double __kernel_sinl(long double, long double, int);
long double __kernel_cosl(long double, long double);
long double __kernel_tanl(long double, long double, int);

#endif /* !_MATH_PRIVATE_H_ */