DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d38398e5144e)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* vim:set ts=4 sw=4 sts=4 et cindent: */
/*
 * Copyright (C) 2010 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "FFTBlock.h"

#include <complex>

namespace mozilla {

typedef std::complex<double> Complex;

FFTBlock* FFTBlock::CreateInterpolatedBlock(const FFTBlock& block0, const FFTBlock& block1, double interp)
{
    FFTBlock* newBlock = new FFTBlock(block0.FFTSize());

    newBlock->InterpolateFrequencyComponents(block0, block1, interp);

    // In the time-domain, the 2nd half of the response must be zero, to avoid circular convolution aliasing...
    int fftSize = newBlock->FFTSize();
    AlignedTArray<float> buffer(fftSize);
    newBlock->GetInverseWithoutScaling(buffer.Elements());
    AudioBufferInPlaceScale(buffer.Elements(), 1.0f / fftSize, fftSize / 2);
    PodZero(buffer.Elements() + fftSize / 2, fftSize / 2);

    // Put back into frequency domain.
    newBlock->PerformFFT(buffer.Elements());

    return newBlock;
}

void FFTBlock::InterpolateFrequencyComponents(const FFTBlock& block0, const FFTBlock& block1, double interp)
{
    // FIXME : with some work, this method could be optimized

    ComplexU* dft = mOutputBuffer.Elements();

    const ComplexU* dft1 = block0.mOutputBuffer.Elements();
    const ComplexU* dft2 = block1.mOutputBuffer.Elements();

    MOZ_ASSERT(mFFTSize == block0.FFTSize());
    MOZ_ASSERT(mFFTSize == block1.FFTSize());
    double s1base = (1.0 - interp);
    double s2base = interp;

    double phaseAccum = 0.0;
    double lastPhase1 = 0.0;
    double lastPhase2 = 0.0;

    int n = mFFTSize / 2;

    dft[0].r = static_cast<float>(s1base * dft1[0].r + s2base * dft2[0].r);
    dft[n].r = static_cast<float>(s1base * dft1[n].r + s2base * dft2[n].r);

    for (int i = 1; i < n; ++i) {
        Complex c1(dft1[i].r, dft1[i].i);
        Complex c2(dft2[i].r, dft2[i].i);

        double mag1 = abs(c1);
        double mag2 = abs(c2);

        // Interpolate magnitudes in decibels
        double mag1db = 20.0 * log10(mag1);
        double mag2db = 20.0 * log10(mag2);

        double s1 = s1base;
        double s2 = s2base;

        double magdbdiff = mag1db - mag2db;

        // Empirical tweak to retain higher-frequency zeroes
        double threshold =  (i > 16) ? 5.0 : 2.0;

        if (magdbdiff < -threshold && mag1db < 0.0) {
            s1 = pow(s1, 0.75);
            s2 = 1.0 - s1;
        } else if (magdbdiff > threshold && mag2db < 0.0) {
            s2 = pow(s2, 0.75);
            s1 = 1.0 - s2;
        }

        // Average magnitude by decibels instead of linearly
        double magdb = s1 * mag1db + s2 * mag2db;
        double mag = pow(10.0, 0.05 * magdb);

        // Now, deal with phase
        double phase1 = arg(c1);
        double phase2 = arg(c2);

        double deltaPhase1 = phase1 - lastPhase1;
        double deltaPhase2 = phase2 - lastPhase2;
        lastPhase1 = phase1;
        lastPhase2 = phase2;

        // Unwrap phase deltas
        if (deltaPhase1 > M_PI)
            deltaPhase1 -= 2.0 * M_PI;
        if (deltaPhase1 < -M_PI)
            deltaPhase1 += 2.0 * M_PI;
        if (deltaPhase2 > M_PI)
            deltaPhase2 -= 2.0 * M_PI;
        if (deltaPhase2 < -M_PI)
            deltaPhase2 += 2.0 * M_PI;

        // Blend group-delays
        double deltaPhaseBlend;

        if (deltaPhase1 - deltaPhase2 > M_PI)
            deltaPhaseBlend = s1 * deltaPhase1 + s2 * (2.0 * M_PI + deltaPhase2);
        else if (deltaPhase2 - deltaPhase1 > M_PI)
            deltaPhaseBlend = s1 * (2.0 * M_PI + deltaPhase1) + s2 * deltaPhase2;
        else
            deltaPhaseBlend = s1 * deltaPhase1 + s2 * deltaPhase2;

        phaseAccum += deltaPhaseBlend;

        // Unwrap
        if (phaseAccum > M_PI)
            phaseAccum -= 2.0 * M_PI;
        if (phaseAccum < -M_PI)
            phaseAccum += 2.0 * M_PI;

        dft[i].r = static_cast<float>(mag * cos(phaseAccum));
        dft[i].i = static_cast<float>(mag * sin(phaseAccum));
    }
}

double FFTBlock::ExtractAverageGroupDelay()
{
    ComplexU* dft = mOutputBuffer.Elements();

    double aveSum = 0.0;
    double weightSum = 0.0;
    double lastPhase = 0.0;

    int halfSize = FFTSize() / 2;

    const double kSamplePhaseDelay = (2.0 * M_PI) / double(FFTSize());

    // Remove DC offset
    dft[0].r = 0.0f;

    // Calculate weighted average group delay
    for (int i = 1; i < halfSize; i++) {
        Complex c(dft[i].r, dft[i].i);
        double mag = abs(c);
        double phase = arg(c);

        double deltaPhase = phase - lastPhase;
        lastPhase = phase;

        // Unwrap
        if (deltaPhase < -M_PI)
            deltaPhase += 2.0 * M_PI;
        if (deltaPhase > M_PI)
            deltaPhase -= 2.0 * M_PI;

        aveSum += mag * deltaPhase;
        weightSum += mag;
    }

    // Note how we invert the phase delta wrt frequency since this is how group delay is defined
    double ave = aveSum / weightSum;
    double aveSampleDelay = -ave / kSamplePhaseDelay;

    // Leave 20 sample headroom (for leading edge of impulse)
    aveSampleDelay -= 20.0;
    if (aveSampleDelay <= 0.0)
        return 0.0;

    // Remove average group delay (minus 20 samples for headroom)
    AddConstantGroupDelay(-aveSampleDelay);

    return aveSampleDelay;
}

void FFTBlock::AddConstantGroupDelay(double sampleFrameDelay)
{
    int halfSize = FFTSize() / 2;

    ComplexU* dft = mOutputBuffer.Elements();

    const double kSamplePhaseDelay = (2.0 * M_PI) / double(FFTSize());

    double phaseAdj = -sampleFrameDelay * kSamplePhaseDelay;

    // Add constant group delay
    for (int i = 1; i < halfSize; i++) {
        Complex c(dft[i].r, dft[i].i);
        double mag = abs(c);
        double phase = arg(c);

        phase += i * phaseAdj;

        dft[i].r = static_cast<float>(mag * cos(phase));
        dft[i].i = static_cast<float>(mag * sin(phase));
    }
}

} // namespace mozilla