DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d38398e5144e)

VCS Links

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "DelayBuffer.h"

#include "mozilla/PodOperations.h"
#include "AudioChannelFormat.h"
#include "AudioNodeEngine.h"

namespace mozilla {

size_t
DelayBuffer::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
  size_t amount = 0;
  amount += mChunks.ShallowSizeOfExcludingThis(aMallocSizeOf);
  for (size_t i = 0; i < mChunks.Length(); i++) {
    amount += mChunks[i].SizeOfExcludingThis(aMallocSizeOf, false);
  }

  amount += mUpmixChannels.ShallowSizeOfExcludingThis(aMallocSizeOf);
  return amount;
}

void
DelayBuffer::Write(const AudioBlock& aInputChunk)
{
  // We must have a reference to the buffer if there are channels
  MOZ_ASSERT(aInputChunk.IsNull() == !aInputChunk.ChannelCount());
#ifdef DEBUG
  MOZ_ASSERT(!mHaveWrittenBlock);
  mHaveWrittenBlock = true;
#endif

  if (!EnsureBuffer()) {
    return;
  }

  if (mCurrentChunk == mLastReadChunk) {
    mLastReadChunk = -1; // invalidate cache
  }
  mChunks[mCurrentChunk] = aInputChunk.AsAudioChunk();
}

void
DelayBuffer::Read(const double aPerFrameDelays[WEBAUDIO_BLOCK_SIZE],
                  AudioBlock* aOutputChunk,
                  ChannelInterpretation aChannelInterpretation)
{
  int chunkCount = mChunks.Length();
  if (!chunkCount) {
    aOutputChunk->SetNull(WEBAUDIO_BLOCK_SIZE);
    return;
  }

  // Find the maximum number of contributing channels to determine the output
  // channel count that retains all signal information.  Buffered blocks will
  // be upmixed if necessary.
  //
  // First find the range of "delay" offsets backwards from the current
  // position.  Note that these may be negative for frames that are after the
  // current position (including i).
  double minDelay = aPerFrameDelays[0];
  double maxDelay = minDelay;
  for (unsigned i = 1; i < WEBAUDIO_BLOCK_SIZE; ++i) {
    minDelay = std::min(minDelay, aPerFrameDelays[i] - i);
    maxDelay = std::max(maxDelay, aPerFrameDelays[i] - i);
  }

  // Now find the chunks touched by this range and check their channel counts.
  int oldestChunk = ChunkForDelay(int(maxDelay) + 1);
  int youngestChunk = ChunkForDelay(minDelay);

  uint32_t channelCount = 0;
  for (int i = oldestChunk; true; i = (i + 1) % chunkCount) {
    channelCount = GetAudioChannelsSuperset(channelCount,
                                            mChunks[i].ChannelCount());
    if (i == youngestChunk) {
      break;
    }
  }

  if (channelCount) {
    aOutputChunk->AllocateChannels(channelCount);
    ReadChannels(aPerFrameDelays, aOutputChunk,
                 0, channelCount, aChannelInterpretation);
  } else {
    aOutputChunk->SetNull(WEBAUDIO_BLOCK_SIZE);
  }

  // Remember currentDelayFrames for the next ProcessBlock call
  mCurrentDelay = aPerFrameDelays[WEBAUDIO_BLOCK_SIZE - 1];
}

void
DelayBuffer::ReadChannel(const double aPerFrameDelays[WEBAUDIO_BLOCK_SIZE],
                         AudioBlock* aOutputChunk, uint32_t aChannel,
                         ChannelInterpretation aChannelInterpretation)
{
  if (!mChunks.Length()) {
    float* outputChannel = aOutputChunk->ChannelFloatsForWrite(aChannel);
    PodZero(outputChannel, WEBAUDIO_BLOCK_SIZE);
    return;
  }

  ReadChannels(aPerFrameDelays, aOutputChunk,
               aChannel, 1, aChannelInterpretation);
}

void
DelayBuffer::ReadChannels(const double aPerFrameDelays[WEBAUDIO_BLOCK_SIZE],
                          AudioBlock* aOutputChunk,
                          uint32_t aFirstChannel, uint32_t aNumChannelsToRead,
                          ChannelInterpretation aChannelInterpretation)
{
  uint32_t totalChannelCount = aOutputChunk->ChannelCount();
  uint32_t readChannelsEnd = aFirstChannel + aNumChannelsToRead;
  MOZ_ASSERT(readChannelsEnd <= totalChannelCount);

  if (mUpmixChannels.Length() != totalChannelCount) {
    mLastReadChunk = -1; // invalidate cache
  }

  for (uint32_t channel = aFirstChannel;
       channel < readChannelsEnd; ++channel) {
    PodZero(aOutputChunk->ChannelFloatsForWrite(channel), WEBAUDIO_BLOCK_SIZE);
  }

  for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
    double currentDelay = aPerFrameDelays[i];
    MOZ_ASSERT(currentDelay >= 0.0);
    MOZ_ASSERT(currentDelay <= (mChunks.Length() - 1) * WEBAUDIO_BLOCK_SIZE);

    // Interpolate two input frames in case the read position does not match
    // an integer index.
    // Use the larger delay, for the older frame, first, as this is more
    // likely to use the cached upmixed channel arrays.
    int floorDelay = int(currentDelay);
    double interpolationFactor = currentDelay - floorDelay;
    int positions[2];
    positions[1] = PositionForDelay(floorDelay) + i;
    positions[0] = positions[1] - 1;

    for (unsigned tick = 0; tick < ArrayLength(positions); ++tick) {
      int readChunk = ChunkForPosition(positions[tick]);
      // mVolume is not set on default initialized chunks so handle null
      // chunks specially.
      if (!mChunks[readChunk].IsNull()) {
        int readOffset = OffsetForPosition(positions[tick]);
        UpdateUpmixChannels(readChunk, totalChannelCount,
                            aChannelInterpretation);
        double multiplier = interpolationFactor * mChunks[readChunk].mVolume;
        for (uint32_t channel = aFirstChannel;
             channel < readChannelsEnd; ++channel) {
          aOutputChunk->ChannelFloatsForWrite(channel)[i] += multiplier *
            mUpmixChannels[channel][readOffset];
        }
      }

      interpolationFactor = 1.0 - interpolationFactor;
    }
  }
}

void
DelayBuffer::Read(double aDelayTicks, AudioBlock* aOutputChunk,
                  ChannelInterpretation aChannelInterpretation)
{
  const bool firstTime = mCurrentDelay < 0.0;
  double currentDelay = firstTime ? aDelayTicks : mCurrentDelay;

  double computedDelay[WEBAUDIO_BLOCK_SIZE];

  for (unsigned i = 0; i < WEBAUDIO_BLOCK_SIZE; ++i) {
    // If the value has changed, smoothly approach it
    currentDelay += (aDelayTicks - currentDelay) * mSmoothingRate;
    computedDelay[i] = currentDelay;
  }

  Read(computedDelay, aOutputChunk, aChannelInterpretation);
}

bool
DelayBuffer::EnsureBuffer()
{
  if (mChunks.Length() == 0) {
    // The length of the buffer is at least one block greater than the maximum
    // delay so that writing an input block does not overwrite the block that
    // would subsequently be read at maximum delay.  Also round up to the next
    // block size, so that no block of writes will need to wrap.
    const int chunkCount = (mMaxDelayTicks + 2 * WEBAUDIO_BLOCK_SIZE - 1) >>
                                         WEBAUDIO_BLOCK_SIZE_BITS;
    if (!mChunks.SetLength(chunkCount, fallible)) {
      return false;
    }

    mLastReadChunk = -1;
  }
  return true;
}

int
DelayBuffer::PositionForDelay(int aDelay) {
  // Adding mChunks.Length() keeps integers positive for defined and
  // appropriate bitshift, remainder, and bitwise operations.
  return ((mCurrentChunk + mChunks.Length()) * WEBAUDIO_BLOCK_SIZE) - aDelay;
}

int
DelayBuffer::ChunkForPosition(int aPosition)
{
  MOZ_ASSERT(aPosition >= 0);
  return (aPosition >> WEBAUDIO_BLOCK_SIZE_BITS) % mChunks.Length();
}

int
DelayBuffer::OffsetForPosition(int aPosition)
{
  MOZ_ASSERT(aPosition >= 0);
  return aPosition & (WEBAUDIO_BLOCK_SIZE - 1);
}

int
DelayBuffer::ChunkForDelay(int aDelay)
{
  return ChunkForPosition(PositionForDelay(aDelay));
}

void
DelayBuffer::UpdateUpmixChannels(int aNewReadChunk, uint32_t aChannelCount,
                                 ChannelInterpretation aChannelInterpretation)
{
  if (aNewReadChunk == mLastReadChunk) {
    MOZ_ASSERT(mUpmixChannels.Length() == aChannelCount);
    return;
  }

  NS_WARNING_ASSERTION(mHaveWrittenBlock || aNewReadChunk != mCurrentChunk,
                       "Smoothing is making feedback delay too small.");

  mLastReadChunk = aNewReadChunk;
  mUpmixChannels = mChunks[aNewReadChunk].ChannelData<float>();
  MOZ_ASSERT(mUpmixChannels.Length() <= aChannelCount);
  if (mUpmixChannels.Length() < aChannelCount) {
    if (aChannelInterpretation == ChannelInterpretation::Speakers) {
      AudioChannelsUpMix(&mUpmixChannels,
                         aChannelCount, SilentChannel::ZeroChannel<float>());
      MOZ_ASSERT(mUpmixChannels.Length() == aChannelCount,
                 "We called GetAudioChannelsSuperset to avoid this");
    } else {
      // Fill up the remaining channels with zeros
      for (uint32_t channel = mUpmixChannels.Length();
           channel < aChannelCount; ++channel) {
        mUpmixChannels.AppendElement(SilentChannel::ZeroChannel<float>());
      }
    }
  }
}

} // namespace mozilla