DXR is a code search and navigation tool aimed at making sense of large projects. It supports full-text and regex searches as well as structural queries.

Header

Mercurial (d38398e5144e)

VCS Links

ConvolverNodeEngine

Parameters

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ConvolverNode.h"
#include "mozilla/dom/ConvolverNodeBinding.h"
#include "nsAutoPtr.h"
#include "AlignmentUtils.h"
#include "AudioNodeEngine.h"
#include "AudioNodeStream.h"
#include "blink/Reverb.h"
#include "PlayingRefChangeHandler.h"

namespace mozilla {
namespace dom {

NS_IMPL_CYCLE_COLLECTION_INHERITED(ConvolverNode, AudioNode, mBuffer)

NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION_INHERITED(ConvolverNode)
NS_INTERFACE_MAP_END_INHERITING(AudioNode)

NS_IMPL_ADDREF_INHERITED(ConvolverNode, AudioNode)
NS_IMPL_RELEASE_INHERITED(ConvolverNode, AudioNode)

class ConvolverNodeEngine final : public AudioNodeEngine
{
  typedef PlayingRefChangeHandler PlayingRefChanged;
public:
  ConvolverNodeEngine(AudioNode* aNode, bool aNormalize)
    : AudioNodeEngine(aNode)
    , mBufferLength(0)
    , mLeftOverData(INT32_MIN)
    , mSampleRate(0.0f)
    , mUseBackgroundThreads(!aNode->Context()->IsOffline())
    , mNormalize(aNormalize)
  {
  }

  enum Parameters {
    BUFFER_LENGTH,
    SAMPLE_RATE,
    NORMALIZE
  };
  void SetInt32Parameter(uint32_t aIndex, int32_t aParam) override
  {
    switch (aIndex) {
    case BUFFER_LENGTH:
      // BUFFER_LENGTH is the first parameter that we set when setting a new buffer,
      // so we should be careful to invalidate the rest of our state here.
      mBuffer = nullptr;
      mSampleRate = 0.0f;
      mBufferLength = aParam;
      mLeftOverData = INT32_MIN;
      break;
    case SAMPLE_RATE:
      mSampleRate = aParam;
      break;
    case NORMALIZE:
      mNormalize = !!aParam;
      break;
    default:
      NS_ERROR("Bad ConvolverNodeEngine Int32Parameter");
    }
  }
  void SetDoubleParameter(uint32_t aIndex, double aParam) override
  {
    switch (aIndex) {
    case SAMPLE_RATE:
      mSampleRate = aParam;
      AdjustReverb();
      break;
    default:
      NS_ERROR("Bad ConvolverNodeEngine DoubleParameter");
    }
  }
  void SetBuffer(already_AddRefed<ThreadSharedFloatArrayBufferList> aBuffer) override
  {
    mBuffer = aBuffer;
    AdjustReverb();
  }

  void AdjustReverb()
  {
    // Note about empirical tuning (this is copied from Blink)
    // The maximum FFT size affects reverb performance and accuracy.
    // If the reverb is single-threaded and processes entirely in the real-time audio thread,
    // it's important not to make this too high.  In this case 8192 is a good value.
    // But, the Reverb object is multi-threaded, so we want this as high as possible without losing too much accuracy.
    // Very large FFTs will have worse phase errors. Given these constraints 32768 is a good compromise.
    const size_t MaxFFTSize = 32768;

    if (!mBuffer || !mBufferLength || !mSampleRate) {
      mReverb = nullptr;
      mLeftOverData = INT32_MIN;
      return;
    }

    mReverb = new WebCore::Reverb(mBuffer, mBufferLength,
                                  MaxFFTSize, 2, mUseBackgroundThreads,
                                  mNormalize, mSampleRate);
  }

  void ProcessBlock(AudioNodeStream* aStream,
                    GraphTime aFrom,
                    const AudioBlock& aInput,
                    AudioBlock* aOutput,
                    bool* aFinished) override
  {
    if (!mReverb) {
      aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
      return;
    }

    AudioBlock input = aInput;
    if (aInput.IsNull()) {
      if (mLeftOverData > 0) {
        mLeftOverData -= WEBAUDIO_BLOCK_SIZE;
        input.AllocateChannels(1);
        WriteZeroesToAudioBlock(&input, 0, WEBAUDIO_BLOCK_SIZE);
      } else {
        if (mLeftOverData != INT32_MIN) {
          mLeftOverData = INT32_MIN;
          aStream->ScheduleCheckForInactive();
          RefPtr<PlayingRefChanged> refchanged =
            new PlayingRefChanged(aStream, PlayingRefChanged::RELEASE);
          aStream->Graph()->
            DispatchToMainThreadAfterStreamStateUpdate(mAbstractMainThread,
                                                       refchanged.forget());
        }
        aOutput->SetNull(WEBAUDIO_BLOCK_SIZE);
        return;
      }
    } else {
      if (aInput.mVolume != 1.0f) {
        // Pre-multiply the input's volume
        uint32_t numChannels = aInput.ChannelCount();
        input.AllocateChannels(numChannels);
        for (uint32_t i = 0; i < numChannels; ++i) {
          const float* src = static_cast<const float*>(aInput.mChannelData[i]);
          float* dest = input.ChannelFloatsForWrite(i);
          AudioBlockCopyChannelWithScale(src, aInput.mVolume, dest);
        }
      }

      if (mLeftOverData <= 0) {
        RefPtr<PlayingRefChanged> refchanged =
          new PlayingRefChanged(aStream, PlayingRefChanged::ADDREF);
        aStream->Graph()->
          DispatchToMainThreadAfterStreamStateUpdate(mAbstractMainThread,
                                                     refchanged.forget());
      }
      mLeftOverData = mBufferLength;
      MOZ_ASSERT(mLeftOverData > 0);
    }
    aOutput->AllocateChannels(2);

    mReverb->process(&input, aOutput);
  }

  bool IsActive() const override
  {
    return mLeftOverData != INT32_MIN;
  }

  size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const override
  {
    size_t amount = AudioNodeEngine::SizeOfExcludingThis(aMallocSizeOf);
    if (mBuffer && !mBuffer->IsShared()) {
      amount += mBuffer->SizeOfIncludingThis(aMallocSizeOf);
    }

    if (mReverb) {
      amount += mReverb->sizeOfIncludingThis(aMallocSizeOf);
    }

    return amount;
  }

  size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const override
  {
    return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
  }

private:
  RefPtr<ThreadSharedFloatArrayBufferList> mBuffer;
  nsAutoPtr<WebCore::Reverb> mReverb;
  int32_t mBufferLength;
  int32_t mLeftOverData;
  float mSampleRate;
  bool mUseBackgroundThreads;
  bool mNormalize;
};

ConvolverNode::ConvolverNode(AudioContext* aContext)
  : AudioNode(aContext,
              2,
              ChannelCountMode::Clamped_max,
              ChannelInterpretation::Speakers)
  , mNormalize(true)
{
  ConvolverNodeEngine* engine = new ConvolverNodeEngine(this, mNormalize);
  mStream = AudioNodeStream::Create(aContext, engine,
                                    AudioNodeStream::NO_STREAM_FLAGS,
                                    aContext->Graph());
}

/* static */ already_AddRefed<ConvolverNode>
ConvolverNode::Create(JSContext* aCx, AudioContext& aAudioContext,
                      const ConvolverOptions& aOptions,
                      ErrorResult& aRv)
{
  if (aAudioContext.CheckClosed(aRv)) {
    return nullptr;
  }

  RefPtr<ConvolverNode> audioNode = new ConvolverNode(&aAudioContext);

  audioNode->Initialize(aOptions, aRv);
  if (NS_WARN_IF(aRv.Failed())) {
    return nullptr;
  }

  // This must be done before setting the buffer.
  audioNode->SetNormalize(!aOptions.mDisableNormalization);

  if (aOptions.mBuffer.WasPassed()) {
    MOZ_ASSERT(aCx);
    audioNode->SetBuffer(aCx, aOptions.mBuffer.Value(), aRv);
    if (NS_WARN_IF(aRv.Failed())) {
      return nullptr;
    }
  }

  return audioNode.forget();
}

size_t
ConvolverNode::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
  size_t amount = AudioNode::SizeOfExcludingThis(aMallocSizeOf);
  if (mBuffer) {
    // NB: mBuffer might be shared with the associated engine, by convention
    //     the AudioNode will report.
    amount += mBuffer->SizeOfIncludingThis(aMallocSizeOf);
  }
  return amount;
}

size_t
ConvolverNode::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
  return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}

JSObject*
ConvolverNode::WrapObject(JSContext* aCx, JS::Handle<JSObject*> aGivenProto)
{
  return ConvolverNodeBinding::Wrap(aCx, this, aGivenProto);
}

void
ConvolverNode::SetBuffer(JSContext* aCx, AudioBuffer* aBuffer, ErrorResult& aRv)
{
  if (aBuffer) {
    switch (aBuffer->NumberOfChannels()) {
    case 1:
    case 2:
    case 4:
      // Supported number of channels
      break;
    default:
      aRv.Throw(NS_ERROR_DOM_SYNTAX_ERR);
      return;
    }
  }

  mBuffer = aBuffer;

  // Send the buffer to the stream
  AudioNodeStream* ns = mStream;
  MOZ_ASSERT(ns, "Why don't we have a stream here?");
  if (mBuffer) {
    uint32_t length = mBuffer->Length();
    RefPtr<ThreadSharedFloatArrayBufferList> data =
      mBuffer->GetThreadSharedChannelsForRate(aCx);
    if (data && length < WEBAUDIO_BLOCK_SIZE) {
      // For very small impulse response buffers, we need to pad the
      // buffer with 0 to make sure that the Reverb implementation
      // has enough data to compute FFTs from.
      length = WEBAUDIO_BLOCK_SIZE;
      RefPtr<ThreadSharedFloatArrayBufferList> paddedBuffer =
        new ThreadSharedFloatArrayBufferList(data->GetChannels());
      void* channelData = malloc(sizeof(float) * length * data->GetChannels() + 15);
      float* alignedChannelData = ALIGNED16(channelData);
      ASSERT_ALIGNED16(alignedChannelData);
      for (uint32_t i = 0; i < data->GetChannels(); ++i) {
        PodCopy(alignedChannelData + length * i, data->GetData(i), mBuffer->Length());
        PodZero(alignedChannelData + length * i + mBuffer->Length(), WEBAUDIO_BLOCK_SIZE - mBuffer->Length());
        paddedBuffer->SetData(i, (i == 0) ? channelData : nullptr, free, alignedChannelData);
      }
      data = paddedBuffer;
    }
    SendInt32ParameterToStream(ConvolverNodeEngine::BUFFER_LENGTH, length);
    SendDoubleParameterToStream(ConvolverNodeEngine::SAMPLE_RATE,
                                mBuffer->SampleRate());
    ns->SetBuffer(data.forget());
  } else {
    ns->SetBuffer(nullptr);
  }
}

void
ConvolverNode::SetNormalize(bool aNormalize)
{
  mNormalize = aNormalize;
  SendInt32ParameterToStream(ConvolverNodeEngine::NORMALIZE, aNormalize);
}

} // namespace dom
} // namespace mozilla